
Quality of Service Abstractions for Software-defined
Networks

Cole Schlesinger
Princeton University

Hitesh Ballani
Microsoft Research

Thomas Karagiannis
Microsoft Research

Dimitrios Vytiniotis
Microsoft Research

ABSTRACT
Software-defined networking (SDN) provides a means of con-
figuring the packet-forwarding behavior of a network from a
logically-centralized controller. Expressive, high-level lan-
guages have emerged for expressing data-plane configura-
tions, and new tools allow for verifying packet reachabil-
ity properties in real time. But SDN largely ignores quality
of service (QoS) primitives, such as queues, queuing disci-
plines, and rate limiters, leaving configuration of these el-
ements to be performed out of band in an ad-hoc manner.
Not only does this make QoS elements difficult to configure,
it also leads to a “try it and see” approach to analysis and
verification of QoS properties.

We propose a new language for configuring SDNs with
quality of service primitives. Our language comes equipped
with a well-defined semantics drawn from the network cal-
culus, which we believe will yield an equational theory for
reasoning about network quality of service as well as deci-
sion procedures for verifying QoS properties.

1. INTRODUCTION
Software-defined networking (SDN) has seen a great

surge in popularity, in large part because of the pro-
grammatic control the OpenFlow protocol [26] provides
for configuring data-plane forwarding. This has, in turn,
led to the development of higher-level policy languages
for configuring forwarding behavior, along with compil-
ers targeting OpenFlow [13, 5, 33, 27]. Verification tools
have been developed for checking reachability proper-
ties of data plane configurations [21, 22, 30], as well as
correctness properties of the controller programs that
orchestrate network behavior over time [9, 6, 32].

Quality of service (QoS), on the other hand, has re-
ceived less attention. The OpenFlow protocol provides
only limited support for queue selection, and any config-
uration of QoS elements—queues, rate limiters, etc.—
must be done out of band. Despite these limitations,
several projects have made use of SDNs to offer guaran-
tees about bandwidth as part of network orchestration
frameworks [12, 31], and others have employed SDN

coupled with traffic monitoring for increasing overall
wide-area network utilization [16, 17].

For these projects, it was sufficient to reason about
bandwidth allocation with respect to link capacities.
However, many datacenter applications are sensitive to
network delay—this is especially true for user-facing ap-
plications like search and recommendation systems that
need to respond to users in a timely fashion and gen-
erate short, delay-sensitive flows across the network [4].
Specifically, a datacenter operator may want to know,
given a characterization of traffic entering the network,
will packets ever be dropped due to congestion, will
packets within a flow ever be reordered, what are the
minimum queue sizes necessary to avoid packet loss,
what is the maximum packet jitter, etc.. Given that
queuing is a dominant component of network delay in
datacenters, we show that many such QoS questions
boil down to quantifying queuing delay.

While it is very hard to reason about QoS and queu-
ing delay in general networks, datacenters offer a unique
opportunity on this front, as well. Recent proposals ar-
gue for enabling per-tenant bandwidth guarantees in
datacenters by enforcing rate limits at the end hosts [7,
15, 8, 29, 18], which enables a precise characterization
of the traffic entering the datacenter’s internal network.
This, in turn, makes it possible to apply techniques like
network calculus [11, 24, 25, 20] to analyze network
queuing delay.

Reasoning about quality of service is fundamentally
tied to reasoning about network forwarding behavior,
which might add packets, such as when supporting mul-
ticast or flooding; remove packets, as in access control;
or aggregate or split flows during routing. Hence, we
propose a language, called QtKAT,1 that provides a
unified model of forwarding and quality of service.

QoS inherently concerns how packets interact in the
network, and so QtKAT operates at the granularity of
flows, where a flow is a set of packets that share some
traffic characteristic. Thus, QtKAT models the network

1Pronounced “cutie cat,” of course.

1

Figure 1: A simple network.

as a function that consumes a set of input flows and
produces a set of output flows that reflect the changes
imposed on packets by the forwarding configuration, as
well as changes wrought on each flow’s traffic character-
istics by rate limiters, bandwidth constraints, queuing
disciplines, and interference with other flows.

Specifically, QtKAT extends NetKAT [5], a language
for modeling network forwarding, by adding a notion of
traffic models to characterize a flow’s traffic and ser-
vice models to capture how a switch services traffic.
QtKAT’s semantics rely on four basic properties of traf-
fic and service models that, in turn, are satisfied by
techniques from network calculus (both deterministic
and stochastic). This allows QtKAT to remain oblivi-
ous of the choice of network calculus model, so long as
it satisfies each property.

Through a series of examples, we show how to phrase
and verify interesting QoS questions with QtKAT. We
conclude by discussing open questions regarding the
language’s properties (like yielding an equational the-
ory for network QoS) and the systems’ implications (like
the ability to verify properties in a scalable and timely
fashion).

The scope of this work. It bears noting that this
work does not contribute any new algorithms for pro-
viding stronger quality of service guarantees. Nor does
it contribute new network calculus techniques. Rather,
it provides a unifying model for configuring and verify-
ing routing and quality of service properties. We found
the composition to be nontrivial.

2. QtKAT BY EXAMPLE
We introduce QtKAT by example—Figure 1 depicts

a simple topology with two switches (s1 and s2) aggre-
gating two flows (w1 and w2) over a single link. For
simplicity, we focus on traffic flowing from left to right,
but characterizing bidirectional traffic (and larger net-
works) is straightforward. Figures 2 and 3 present the
language syntax and semantics (detailed in Section 3).

Modeling flows and switches. Recent approaches
to analyze network forwarding behavior aim to do the
following: Given a packet at a particular switch/port,
produce the (possibly empty) set of packets the switch
will emit. In this paper, we extend this to reason about
packets’ quality of service (QoS). The challenge is that
while it is feasible to reason about forwarding of indi-

vidual packets in isolation, QoS inherently concerns how
packets interact with each other at network switches.

To capture this, we use the term flow to refer to a set
of packets that share some traffic characteristic. Specif-
ically, we model a flow as a pair (a, f) comprising a
predicate and a function. The predicate a is a boolean
predicate on packets (defined in Figure 2) and declares
which packets are included in a flow. The function f is
a traffic model that captures how the flow’s packets ar-
rive at a location. Existing approaches for QoS analysis
like network calculus and stochastic network calculus
use deterministic and stochastic traffic models respec-
tively. QtKAT uses an abstract traffic model that can
be instantiated using such existing models (details in
Section 4). For the example in this section, we use a
deterministic model f to bound the aggregate number
of bits transmitted in the flow as a function of time.

w1 , (src = 1; pt = 1, g1(t) = t)

w2 , (src = 2; pt = 2, g2(t) = 2t)

For example, w1 describes a flow of packets at port 1
with a source address of 1 (shorthand for, say, 10.0.0.1).
The flow’s traffic model g1 says that one bit for the flow
arrives per time interval.

To model the forwarding and QoS behavior of the
network, we model each switch as follows. Given a set of
flows, a switch will produce a new set of flows, perhaps
modifying the packets in them (i.e. changing the flows’
predicates), and perhaps altering their traffic model (i.e.
changing the flows’ traffic functions). In other words,
the network as a whole can be viewed as a function
that takes a set of flows and produces a new set of flows
with new traffic characteristics. Thus, QtKAT policies
are functions on sets of flows. We write JpK to be the
function denoted by a policy p.

Routing flows. An SDN controller is responsible
for configuring switches s1 and s2 to forward packets
appropriately. Indeed, we might configure s1 with the
following policy p, which states that packets arriving on
ports 1 or 2 should be emitted from port 3.

p , (pt = 1 + pt = 2); pt← 3

We write pt = 1 + pt = 2 as a predicate on packets—
here, f = v is a basic test on the value of packet header
fields, and (+) is disjunction. The predicate is sequenced
with pt← 3, which assigns 3 to the“port”field and thus,
the packet is emitted from port 3.

And so, how does s1, configured with p, handle flows
w1 and w2? The result of applying p to {w1, w2} is
given by JpK {w1, w2}.

JpK {w1, w2} =

{
(src = 1; pt = 3, g1(t) = t),
(src = 2; pt = 3, g2(t) = 2t)

}
What started as two flows in different locations simply
becomes two flows in the same location. We have not

2

yet accounted for the interaction between flows.

Aggregating and bounding flows. As of yet, the
policy p says nothing about quality of service. But
the switch s1 is bound by physical constraints on how
quickly it can service packets arriving in flows w1 and
w2. A standard practice in the deterministic network
calculus is to model the service s1 can provide as a wide-
sense increasing function on time s(t) which denotes the
aggregate number of bits serviced by time t. For exam-
ple, s(t) = 4t means the switch can service 4 bits per
time interval. Drawing from network calculus, we write
r ← s to mean, “apply service curve s.”

Hence, we can conjoin our policy p with a service
curve attached to port 3: (p; pt = 3; r ← s). This mod-
els the physical limitations the switch faces—packets
leaving from port 3 are constrained by s. Applying this
combined policy to the flows w1 and w2 results in a
single aggregate outgoing flow w3.

Jp; pt = 3; r ← sK {w1, w2} = w3

where w3 , (src = 1|2; pt = 3, (g1 + g2)⊗ s)
The outgoing flow w3 has a source address of 1 or 2,
and its traffic function is the combined traffic function
of the incoming flows (g1 + g2) when processed by the
service function s. This is represented by (g1 + g2)⊗ s.
We explain the convolution operator ⊗ in Section 4—
the intuition is that the service function upper-bounds
the traffic function of the outgoing flow. With s(t) = 4t,
the service function is strictly greater than the combined
incoming traffic function ((g1 + g2) = 3t), so the traffic
function for the outgoing flow is simply 3t.

Determining the aggregate flow w3 is a straightfor-
ward application of network calculus. However, for the
combined forwarding and QoS analysis, it is useful to
retain information about each individual flow, in part to
retain precision if the flows are later split downstream
(as we will see in the “Splitting flows” paragraph be-
low). Thus, instead of generating an aggregate flow w3,
we retain the set of outgoing flows {w′1, w′2}. Here flows
w′1 and w′2 are the result of applying p; pt = 3; r ← s.

Jp; pt = 3; r ← sK {w1, w2} = {w′1, w′2}

where w′1 , (src = 1; pt = 3,q(g1, g2, s))

w′2 , (src = 2; pt = 3,q(g2, g1, s))

The formula q(f, g, s) represents the traffic characteris-
tic of f after being processed by a service curve s subject
to interference by traffic from g.

Modeling the topology. As we saw in the policy
p, by convention packet headers include special fields
holding the current switch and port at which they are
located. By encoding location as part of the packets,
we can in turn model the topology as a special policy
that simply changes the location of the packet.

l , sw = s1; pt = 3; sw← s2 + sw = s2; pt = 3; sw← s1

The link l between s1 and s2 comprises two parts: if a
packet resides at port 3 on switch s1, rewrite its switch
field sw with s2; similarly, if it resides on switch s2,
assign it s1. Furthermore, we can use the bounding
operator to model link capacities. Suppose l had a ca-
pacity of C. Bounding flows across the link by s(t) = Ct
effectively characterizes the maximum link bandwidth:
l; r ← (s(t) = Ct).

Splitting flows. Suppose switch s2 redirects SSH
traffic from both flows out port 4 for monitoring; leaving
the remaining traffic in flows w1 and w2 to be emitted
from ports 1 and 2, respectively.

q ,

 if typ = ssh then pt← 4
else if src = 1 then pt← 1
else if src = 2 then pt← 2

Suppose the policy q configures switch s2 and we apply
JqK to flows w′1 and w′2. For simplicity, we will omit the
service curve for this switch.

JqK {w′1, w′2} = {w∗1 , w∗2 , w∗3}

What are the traffic characteristics of the output flows
w∗1 , w

∗
2 , and w∗3?

First, we know that w∗1 ≤ w′1 and w∗2 ≤ w′2, where
f ≤ g means f(t) ≤ g(t) for all 0 ≤ t—after all, w1 and
w2 may contain no SSH traffic. But to account for the
fraction of traffic that may, in fact, be SSH traffic, we
introduce symbolic constants α and β. Intuitively, when
a flow is split, α and β represent the unknown fraction
of traffic in each split sub-flow. For example, w1 may
be split into its SSH and non-SSH components,

w∗1 , (src = 1; pt = 3, α1 q (g1, g2, s))

wssh
1 , (src = 1; pt = 3, β1 q (g2, g1, s))

where 0 ≤ α1, β1 ≤ 1 and α1 +β1 = 1, and αq (·, ·, ·) is
point-wise multiplication of α (resp. β) on the function
produced by q(·, ·, ·).

Splitting flows is useful for two reasons. First, it
maintains a tight bound on traffic across sub-flows. And
second, analyzing the resulting α/β pairs can provide
insight into improving the granularity of traffic shap-
ing. In this example, imposing two rate limiters at each
flow source—to separately control SSH and non-SSH
traffic—will allow for more fine-grained control over traf-
fic to the monitor.

3. THE QtKAT MODEL
Figure 2 presents the core operations of our language.

QtKAT is defined using an abstract set of fields f, mak-
ing it suitable to reason about existing and future proto-
cols. Packets are records of field/value pairs,2 and traf-
fic and server models f and s are left abstract. An inter-
esting result is that f and s, and operations on them,
2See [14] for a more sophisticated packet model that ac-
counts for field dependencies.

3

fields f ::= f1 | · · · | fk
packets pk ::= {f1 = v1, · · · , fk = vk}
traffic models f
service models s
predicates
a, b ::= id identity

| drop drop
| f = v test
| a+ b disjunction
| a; b conjunction
| ¬a negation

policies
p, q ::= a predicate

| f ← v modification
| p+ q union
| p; q sequencing
| p* Kleene star
| if a then p else q if statement
| r ← s rate limiting

flows w ∈W ::= (a, f)

Figure 2: Syntax.

can be instantiated using different underlying models
from either the deterministic or stochastic network cal-
culi. (Section 4 defines these operations formally.)

Syntax. The syntax of QtKAT is divided into predi-
cates (a, b) and policies (p, q). Predicates form a Boolean
algebra and include the constants id (0) and drop (1),
tests (f = v), disjunction (a+b), conjunction (a; b), and
negation (¬a). All predicates are valid policies, and
policies additionally include field modification (f ← v),
union (p + q), sequential composition (p; q), iteration
(p*), if statements (if a then p else q), and rate limiting
(r ← s). By convention, (*) binds more tightly than
(+), which binds more tightly than (;).

Semantics. The semantics, listed in Figure 3, is
similar in spirit to the symbolic evaluation underlying
Header Space Analysis (HSA), a technique for analyzing
reachability properties [21]. Indeed, when evaluating
policies that exclude the rate limiting operator (r ← s),
our semantics roughly coincide with theirs. But whereas
HSA symbolically represents sets of packets that share
common forwarding behavior, our semantics also ac-
counts for sets of packets belonging to the same flow
and sharing common traffic characteristics.

We define flows to be pairs (a, f), where the predicate
a indicates which packets belong to this flow, and the
traffic model f describes its transmission characteris-
tics. We write JpK as the denotational interpretation of
policies as functions on sets of flows—intuitively, a pol-
icy thus interpreted consumes a set of input flows and
produces a set of output flows that reflect the routing

and interference each encountered within the network.
Predicates and modifications only affect the predicate

portion of flows. When a flow (a, f) is processed by
the policy b, packets in the flow not matching b will be
dropped; hence, the resulting flow only includes packets
matching ba; bc. Similarly, the output flow processed by
the policy f ← v will include the packets matched by
a, except with the field f assigned the value v, written
a[f := v]. We write bac to be a normal form as a tech-
nical convenience, which ensures that if two predicates
are equivalent (a ≡ b), then their normal forms are syn-
tactically equal—an important property for developing
an equational theory (Section 7).

The union operator (p + q) duplicates the set of in-
put flows, processes one copy with p and the other with
q, and merges the resulting output sets. The sequenc-
ing operator (p; q) is modeled as function composition,
capturing the output of p piped as the input to q. Fol-
lowing [5], Kleene star (p*) is modeled as the infinitary
sum (id + p+ p; p+ . . .).

The if-statement (if a then p else q) is a special case
that combines union and sequential composition to re-
tain more precise information about traffic characteris-
tics. The definition resembles Ja; p+ ¬a; qK, but when
each flow is duplicated (as per J+K), the copies are
scaled by symbolic constants αi and βi. Each αi/βi
pair is unique to an input flow and captures the fact
that no new traffic is generated; rather, every packet in
each flow is either processed by p or q, but not both.

Finally, the rate limiting operator (r ← s) has the
effect of aggregating its input flows and applying a per-
flow output constraint that captures the interference be-
tween flows under the bounding constraint of the service
curve s. The auxiliary function sum_others(ws) com-
putes the summation of traffic models in ws, excluding
the flow w, where f + g is an abstract flow aggregation
operation. The resulting per-flow service-bounded traf-
fic model for a flow w = (a, f) ∈ ws is computed by
the abstract function q(f, sum_others(w,ws), s), de-
fined the next section.

4. NETWORK CALCULUS
Network calculus was developed as a more tractable

alternative to queuing theory for analyzing the perfor-
mance of high-speed packet networks [11, 10, 24]. It
has been developed in both deterministic (DNC) and
stochastic (SNC) models,3 and the choice of model in-
fluences the properties that can be verified. DNC places
worst-case bounds on network behavior and is suitable
for providing absolute (but conservative) service guar-
antees, whereas SNC accounts for statistical multiplex-
ing gains when some violations of the deterministic bounds
are acceptable.

3Our treatment is drawn primarily from [25] and [20].

4

JpK ∈ P(W)→ P(W)

JaKws , {(ba; bc , f) | (b, f) ∈ ws ∧ ba; bc 6≡ drop}
Jf ← vKws , {(ba[f := v]c , f) | (a, f) ∈ ws ∧ ba[f := v]c 6≡ drop}
Jp+ qKws , JpKws

⋃
JqKws

Jp; qKws , JqK ◦ JpKws
Jp*K ws ,

⋃
i∈N F

i ws, where F 0 ws , ws and F i+1 ws , (JpK ◦ F i) ws

Jif a then p else q K ws , (Ja; pK {(b, αif) | (b, f) ∈ ws})
⋃

(J¬a; qK {(b, βif) | (b, f) ∈ ws})
such that ∀ 0 ≤ i < |ws| . 0 ≤ αi, βi ≤ 1 and αi + βi = 1

Jr ← sK ws , let sum_others(w,ws) = (
∑
{g | (b, g) ∈ ws \ {w}}) in

{(a,q(f, sum_others(w,ws), s)) | (a, f) = w ∈ ws}

Figure 3: Semantics.

Rather than “hard-code” one network calculus model
in our language semantics, QtKAT is parameterized by
abstract traffic and service models (f and s), as well as
four properties (described below) that relate them [19].
Hence, QtKAT can be instantiated with any model that
supports these properties, including existing determin-
istic and stochastic models, as well as potentially more
accurate models developed in the future.

• (P1) Aggregation | f1 + f2. Two traffic mod-
els can be combined to produce a model of their
aggregate traffic;

• (P2) Output characterization | f ⊗ s. A traf-
fic model can be constrained by a service model
to produce a new traffic model characterizing the
resulting output flow;

• (P3) Per-flow output | q(f1, f2, s). When an
aggregate traffic model is constrained, new traf-
fic models can be produced to characterize the
output of each flow in the aggregate individually.
We write q(f1, f2, s) to denote the output traffic
model for f1 when the aggregate (f1 + f2) is con-
strained by s.

• (P4) Service guarantees | b(t), d(t). Stochastic
backlog and delay guarantees can be derived.

The remainder of this section sketches partial models
that support these properties in the deterministic and
stochastic settings.

Deterministic network calculus. The determin-
istic network calculus models both traffic and service
as monotonic functions on time; the former bounds the
maximum bits transmitted by time t, while the latter
bounds the minimum bits serviced by time t. For ex-
ample, affine functions model traffic governed by token
buckets, where R is the rate at which tokens refresh and
B is the burst size: f(t) = Rt+B. In this setting, f1+f2
is pointwise addition, f⊗s is min-plus convolution, and
per-flow output can be calculated as in [24].

Stochastic network calculus. Unfortunately, we
have not yet discovered a stochastic model that satis-
fies all four properties. Kurose [24] presents a model
that satisfies (P1), (P2), and (P4) [19], as well as a de-
terministic approach to (P3). In this work, traffic from
a source i is bounded over an interval of time t by a dis-
crete random variable Ri

t if Ri
t is stochastically larger

than the number of packets generated over any interval
of t time units by source i.

Going forward, we hope to incorporate the determin-
istic approach to (P3) into the stochastic model and
quantify how conservative it is in practice.

5. NETWORK CONFIGURATION
To be more than just a modeling language, QtKAT

must be able to implement its semantics by configur-
ing forwarding and QoS elements. For forwarding, the
Frenetic SDN controller platform employs NetKAT as
its configuration language [2]. Converting QtKAT to
NetKAT for forwarding configuration is straightforward.

The OpenFlow protocol lacks comprehensive support
for configuring QoS elements like token buckets, pri-
ority markers and priority queues at switches and end
hosts [3]. However, recent work on datacenter network
QoS [7, 18, 28] includes control protocols for configuring
such QoS elements. QtKAT’s rate limiting operator can
be directly mapped to the configuration of token buck-
ets. QtKAT can also support priority queue forwarding
as the modification of metadata fields—just as modify-
ing the pt field of a packet indicates which port a switch
should emit it from, modifying a distinguished queue
field can indicate where a packet should be queued.

6. QUALITY OF SERVICE PROPERTIES
In this section, we show how interesting questions re-

garding network bandwidth, delay and even placement
of QoS elements can be phrased using QtKAT.

Bandwidth. Reasoning about bandwidth constraints

5

is often straightforward. Nevertheless, QtKAT is able
to capture bandwidth properties. Consider the problem
of ensuring per-tenant hose model bandwidth guaran-
tees [7, 29, 18]. Each host i belonging to a tenant is
guaranteed bandwidth Bi. This can be expressed as a
simple bandwidth constraint. Suppose a tenant’s hosts
h1, . . . , hn are connected via a topology t and policy p,
and the service model s , s1 + . . .+ sj denotes the sum
of the service models of links representing the min cut
connecting hosts h1, . . . , hk and hk+1, . . . , hn. To satisfy
the tenant’s guarantee, the aggregate service capacity B
across the min cut must be greater than the total band-
width guaranteed to the smaller group of hosts. Thus,
it suffices to determine whether s ≥ f(t) = Bt, where
(≥) is defined point-wise on functions.

Queuing delay. We considered a few non-bandwidth
QoS questions that datacenter administrators may ask.

• (Q1) Given a topology and per-host rate limits,
will there be losses?

• (Q2) How many failures can the topology absorb
before there will be (congestion) losses?

• (Q3) What is the maximum one-way delay?

• (Q4) What is the maximum jitter for a tenant?

We find that such QoS questions can be reduced to
constraints on network delay. Further, since queuing
dominates the network delay in intra-datacenter set-
tings, we can express these as constraints on queuing
delay. We explain this below. Suppose we have a term
p that represents the whole of the network, including
the topology and the policies of each switch; and sup-
pose we have a set of flows ws from hosts hs, where
the traffic curve of each flow reflects the per-host rate
limits. We can calculate the output flows ws∗ = JpKws,
which, in turn, informs the following.

• (A1) There will be losses if limt→∞ d(t) = ∞ for
any pair of input/output flows on the same pack-
ets.

• (A2) Iteratively removing links and repeating this
analysis will indicate which failures the topology
can tolerate before there will be congestion losses.

• (A3) The maximum one-way delay is the largest
maximum delay for pairs of input/output flows
in f and f∗, where maximum delay is defined as
sup0≤t d(t).

• (A4) . . . which is also the maximum jitter.

Refactoring. Consider a carefully configured net-
work where the administrator has verified the proper-
ties described thus far for the specified traffic model.
But there are multiple options for enforcing these traf-
fic models; for instance, rate limiting could be done at
the hosts [7] or at the switches [28]. Further, hardware
constraints need to be accounted for. For example, the
administrator may place a rate limiter on a switch for

traffic shaping, but due to constraints on the number of
flows the switch can rate limit, some rate limiting may
need to done at the hosts. Ideally, the administrator
would like to produce an equivalent configuration, but
with the switch-based rate limiter instead divided into
(potentially) many end-host rate limiters.

An equational theory provides a set of equations and
inequalities that relate equivalent configurations, which
makes it well-suited for guiding and reasoning about
refactoring. For example, the equation

r ← s; (p+ q) ≡ (r ← s; p) + (r ← s; q)

states that applying rate limiting before duplicating flows
with (+) is the same as applying two rate limiters after
the duplication, one to each copy, which in turn indi-
cates a valid program transformation for rate limiters.
Section 7 discusses the challenges and benefits of devel-
oping an equational theory in general.

7. DISCUSSION
QtKAT is still early-stage work. In this section, we

discuss several open questions going forward.

Performance and accuracy of automated verifi-
cation. Section 6 describes how several QoS properties
can be phrased with QtKAT. Interpreting each prop-
erty with respect to the QtKAT semantics essentially
generates a set of verification conditions in the form of
systems of linear equations amenable to a solver, such as
CPLEX [1]. It remains to be seen how the verification
condition generation and the solver scale as the num-
ber of flows and the size and complexity of the network
increases.

The accuracy of the model also bears investigation—
is the model capable of expressing the traffic and service
characteristics of real networks, and do properties ver-
ified against the model hold on real networks as well?
The extensive work on network calculus gives us hope
that the answers to both these questions will be “yes.”

Equational theory. As its name implies, we hope
that QtKAT will enjoy an equational theory drawn from
the Kleene algebra with tests (KAT) [23]. An equa-
tional theory gives meaning to a language by relating
terms in the language and provides a means of justi-
fying program transformations (i.e. program rewriting
based on the equational axioms) and verifying correct-
ness properties.

A well-designed equational theory will be sound and
complete with respect to the denotational semantics in
Figure 3. Soundness implies that the programmer can
rely entirely on the equational theory to reason about
policies, and completeness implies that there are enough
equations to relate all equivalent policies.

8. CONCLUSION

6

Quality of service analysis and configuration is intrin-
sically tied to network forwarding behavior. We present
QtKAT, a unified language for configuring and verifying
QoS and forwarding properties.

9. REFERENCES
[1] CPLEX optimizer. See

http://tinyurl.com/mnh8mlp.
[2] Frenetic, 2013. See github.com/frenetic-lang.
[3] Openflow switch specification 1.4.0, 2013.
[4] M. Alizadeh, A. Greenberg, D. A. Maltz,

J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. Data center TCP (DCTCP).
SIGCOMM, 2010.

[5] C. J. Anderson, N. Foster, A. Guha, J.-B.
Jeannin, D. Kozen, C. Schlesinger, and D. Walker.
NetKAT: Semantic foundations for networks. In
POPL, January 2014.

[6] T. Ball, N. Bjorner, A. Gember, S. Itzhaky,
A. Karbyshev, M. Sagiv, M. Schapira, and
A. Valadarsky. Vericon: towards verifying
controller programs in software-defined networks.
In PLDI, 2014.

[7] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. SIGCOMM, 2011.

[8] H. Ballani, D. Gunawardena, and T. Karagiannis.
Network sharing in multi-tenant datacenters.
Technical Report MSR-TR-2012-39, MSR, 2012.

[9] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić,
and J. Rexford. A NICE way to test openflow
applications. NSDI, 2012.

[10] C.-S. Chang. Stability, queue length, and delay of
deterministic and stochastic queueing networks.
IEEE Transactions on Automatic Control,
39(5):913–931, 1994.

[11] R. L. Cruz. A calculus for network delay, parts I
and II. In IEEE Transactions on Information
Theory, January 1991.

[12] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca,
and S. Krishnamurthi. Participatory networking:
An API for application control of SDNs. In
SIGCOMM, 2013.

[13] N. Foster, R. Harrison, M. J. Freedman,
C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A network programming
language. In ICFP, September 2011.

[14] A. Guha, M. Reitblatt, and N. Foster.
Machine-verified network controllers. In PLDI,
June 2013.

[15] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong,
P. Sun, W. Wu, and Y. Zhang. SecondNet: A
data center network virtualization architecture
with bandwidth guarantees. November 2010.

[16] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,

V. Gill, M. Nanduri, and R. Wattenhofer.
Achieving high utilization with software-driven
wan. SIGCOMM, 2013.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong,
L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a
globally-deployed software defined WAN. In
SIGCOMM, 2013.

[18] V. Jeyakumar, M. Alizadeh, D. MaziÃĺres,
B. Prabhakar, and C. Kim. EyeQ: Practical
network performance isolation at the edge. In
NSDI, April 2013.

[19] Y. Jiang. A basic stochastic network calculus.
SIGCOMM, 2006.

[20] Y. Jiang and Y. Liu. Stochastic network calculus,
volume 1. Springer, 2008.

[21] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: Static checking for
networks. In NSDI, 2012.

[22] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. B. Godfrey. VeriFlow: Verifying network-wide
invariants in real time. In NSDI, 2013.

[23] D. Kozen. Kleene algebra with tests. ACM Trans.
Program. Lang. Syst., 19(3):427–443, May 1997.

[24] J. Kurose. On computing per-session performance
bounds in high-speed multi-hop computer
networks. SIGMETRICS, 1992.

[25] J.-Y. Le Boudec and P. Thiran. Network calculus:
a theory of deterministic queuing systems for the
internet, volume 2050. Springer, 2001.

[26] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling innovation in
campus networks. SIGCOMM CCR, 2008.

[27] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and
S. Krishnamurthi. Tierless programming and
reasoning for software-defined networks. NSDI,
2014.

[28] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
Faircloud: Sharing the network in cloud
computing. In SIGCOMM, August 2012.

[29] L. Popa, P. Yalagandula, S. Banarjee, J. Mogul,
Y. Turner, and R. Santos. ElasticSwitch: practical
work-conserving bandwidth guarantees for cloud
computing. In SIGCOMM, August 2013.

[30] M. Reitblatt, N. Foster, J. Rexford,
C. Schlesinger, and D. Walker. Abstractions for
network update. In SIGCOMM, 2012.

[31] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and
N. Foster. Managing the network with merlin.
HotNets, 2013.

[32] G. Stewart. Computational verification of network
programs in coq. In Certified Programs and

7

Proofs. 2013.
[33] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and

P. Hudak. Maple: Simplifying SDN programming
using algorithmic policies. In SIGCOMM, 2013.

8

