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Abstract

Many languages have support for automatic type inference.

But when inference fails, the reported error messages can

be unhelpful, highlighting a code location far from the

source of the problem. Several lines of work have emerged

proposing error reports derived from correcting sets: a set

of program points that, when fixed, produce a well-typed

program. Unfortunately, these approaches are tightly tied

to specific languages; targeting a new language requires

encoding a type inference algorithm for the language in a

custom constraint system specific to the error reporting tool.

We show how to produce correcting set-based error reports

by leveraging existing type inference implementations, easing

the burden of adoption and, as type inference algorithms

tend to be efficient in practice, producing error reports of

comparable quality to similar error reporting tools orders of

magnitude faster. Many type inference algorithms are already

formulated as dual phases of type constraint generation and

solving; rather than (re)implementing type inference in an

error explanation tool, we isolate the solving phase and treat

it as an oracle for solving typing constraints. Given any set of

typing constraints, error explanation proceeds by iteratively

removing conflicting constraints from the initial constraint

set until discovering a subset on which the solver succeeds;

the constraints removed form a correcting set. Our approach

is agnostic to the semantics of any particular language or type

system, instead leveraging the existing type inference engine

to give meaning to constraints.

Categories and Subject Descriptors D.2.5 [Testing and

Debugging]: Diagonstics; F.3.2 [Semantics of Programming

Languages]: Program analysis

Keywords Type Error Diagnosis, Type Inference

1. Introduction

Type inference is often sold as a boon to programmers,

offering all the benefits of static typing without the overhead

of type annotations. It is increasingly popular, with modern

languages like Scala supporting local type inference and older

languages like C++ adding type inference features such as

the auto keyword. Reporting insightful type inference errors

in the presence of such language features is difficult because

the problem is ambiguous. To illustrate, Chen and Erwig [4]

give the example of the OCaml expression “not 1,” which

fails to typecheck because not requires a boolean input. Is the

error in the use of not or the use of 1 or the existence of the

entire expression? This question cannot be answered without

knowing the programmer’s original intent, and inferring that

intent is an unsolved—and possibly unsolvable—problem.

The expression “not 1” concisely pinpoints this ambiguity,

but the uses and definitions that give rise to typing conflicts

in real programs often appear much farther apart. Adding

features to the language and type system also adds complexity

in how different program points contribute to failure in

type inference, making insightful error reporting even more

difficult.

Modern compilers—such as the OCaml compiler—take

the pragmatic approach of reporting errors eagerly, as soon

as a typing conflict is discovered. This is easy to implement

but often misses the actual location of the error. For example,

consider the following code snippet, which Zhang and My-

ers [26] drew from a body of student assignments [17] and

simplified for clarity:

1 let rec loop lst acc =

2 if lst = [] then

3 acc

4 else

5 print_string "foo"

6 in

7 List.rev (loop [...] [(0.0, 0.0)])

There are two noteworthy constraints: The types of “acc”

and “print_string "foo"” on lines 3 and 5 must be the

same, and the type of “acc” must be the same as the type

of [(0.0, 0.0)], which is used as an argument to loop on

line 7. Without line 7, the first constraint forces acc to have
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type unit, the return type of print_string. After inferring

this, the OCaml compiler reaches line 7 and reports that loop

is invoked with [(0.0, 0.0)] instead of the unit value. The

actual error, as reported and fixed by the student in question,

was the use of print_string on line 5.

Type inference algorithms often comprise two phases: One

generates a set of constraints relating the types of different

program points, and another solves the constraints to generate

appropriate types [1, 18, 25]. A line of work has emerged

developing error explanation engines based on specialized

type constraint languages and solvers [11, 20, 21, 26, 27]. For

example, recent work proposes encoding type inference as

an SMT problem. By translating typing constraints to SMT

constraints, an off-the-shelf solver can replace the custom

solver, which leads to an elegant error reporting mechanism:

On failure, a MaxSMT solver can produce a correcting set

containing constraints that, when fixed, results in a well-

typed program. By considering every constraint violation,

rather than just the first encountered, this approach can better

pinpoint the root cause of type errors [20, 21]. Another similar

approach is to produce correcting sets based on a Bayesian

interpretation of the program [26, 27]. However, there are two

limitations in these kinds of approaches to error reporting—

ease of adoption and scalability:

• For a compiler to take advantage of these error reporting

tools, one must (re)implement type inference in a different

constraint system—a non-trivial task. For example, find-

ing an efficient SMT encoding is still an open question for

many type inference systems, even those naturally formu-

lated as type constraint generation and solving. Even when

an encoding can be found, reimplementing type inference

represents substantial redundant effort.

• In our experience, specialized type inference algorithms

remain more efficient than the constraint solvers used

to build error reporting engines. Relying on a MaxSMT

solver limits scalability as the size of programs—and the

number of constraints—increases. The encoding prob-

lem itself can also impact performance, as some type

system features, such as the parametric polymorphism

found in OCaml, require an exponential number of SMT

constraints compared to lines of code.1

To address these limitations, we present MYCROFT,2 a

framework that enables compiler writers to augment existing

(constraint-based) type inference implementations to produce

correcting sets, rather than reimplementing type inference in

a distinct, specialized constraint system. The key technical in-

sight lies in decoupling the constraint generation and solving

phases of an existing type inference implementation and us-

ing the type solver as an oracle to decide whether a collection

of typing constraints is satisfiable. By leveraging the existing

1 The MinErrLoc tool overcomes this with clever heuristics to approximate

principal types in their SMT encoding of OCaml type inference [21], but the

problem remains for other encodings.

type inference implementation, MYCROFT is agnostic to the

language and type system.

This approach also improves performance. By using the

existing type solver, MYCROFT works with the existing

constraint system and avoids inefficiencies in encoding one

constraint system in another. (In particular, we avoid the

constraint explosion that arises from encoding parametric

polymorphism, as in [20, 26].) Moreover, the type solver

and its constraint language can be optimized with respect

to domain specific knowledge, which can lead to better

performance than an off-the-shelf SMT solver. Finally, we

experiment with selecting candidate correcting sets using

a greedy approximation algorithm rather than an optimal

exponential-time one, which leads to further improvements.

To use MYCROFT, a compiler writer must make two

changes to type inference: Factor out constraint generation

from solving, and augment solving to produce unsat cores.

We ease adoption by developing an API for instrumenting

a type solver to record the constraints that influence each

type variable assignment, and from that generate an unsat

core on failure. Using this instrumentation, we implement

error explanation for OCaml and for SJSx [3], a type system

that enables ahead-of-time compilation for a large subset of

JavaScript.3 The former allows us to compare performance

with prior work, while the latter demonstrates that adoption

is not hampered by complex type system features.

We evaluate MYCROFT by comparing its performance

and the quality of its error reports against two competing

tools, MinErrLoc [20] and SHErrLoc [26], on a benchmark

of student homework assignments drawn from the Seminal

project [17]. Our results show that MYCROFT produces error

explanations of comparable quality with substantial perfor-

mance improvement. We also report on our experience port-

ing unrestricted JavaScript programs to the SJSx fragment.

Contributions. In summary, our contributions are:

• MYCROFT: A framework for enabling adoption of correct-

ing set-based error explanation by retrofitting constraint-

based type inference algorithms. (Section 3.)

• NP-hard and greedy approximation algorithms for select-

ing the best candidate correcting sets. (Section 3.3.)

• Two case studies—one for OCaml and one for SJSx—

that show how to extract unsat cores from the solvers.

(Section 4.)

• An evaluation on a subset of the Seminal benchmark

suite [17] demonstrating that the greedy approach pro-

duces error messages of comparable quality to previous

work at substantially lower run-time cost. (Section 7.)

2 MYCROFT is named for Mycroft Holmes, the brother of Sherlock.
3 We refer to the work of Chandra et al. [3] as SJSx to distinguish it from

SJS [5].
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2. Our Approach

MYCROFT takes as input two components that, together,

comprise a type inference implementation:

• A type constraint generator that produces a set of con-

straints for a given program and associates those con-

straints with program points, and

• A type solver that produces either a type assignment satis-

fying the constraints or, on failure, a core of unsatisfiable

constraints.

Notably, MYCROFT is agnostic to the semantics of constraints

or the program from which they came. Given a program, it

proceeds as follows.

1. Generate an initial set of typing constraints using the type

constraint generator.

2. Submit the constraint set to the type solver.

3. (a) On success, stop.

(b) On failure, partition the original constraints into a

candidate correcting set and typing set, and submit

the typing set to the type solver.

Step 3 repeats until sufficient constraints have been moved to

the correcting set for the solver to succeed. As an example,

consider the following code sample drawn from [20].

1 let f x = print_int x in

2 let g x = x + 1 in

3 let x = "hi" in

4 f x;

5 g x

The functions f and g use their argument as an integer, but

the value supplied at the call sites is a string. The two library

functions print_int and (+) are ascribed types int → unit

and int → int → int in the context. For brevity, let us

assume the let-bound variables f, g, and x are initially ascribed

fresh unification variables Fin → Fout , Gin → Gout , and X .

The code then gives rise to the following set of constraints.

Fin = int (1)

Fout = unit (2)

Gin = int (3)

Gout = int (4)

X = string (5)

Fin = X (6)

Gin = X (7)

Constraints (1, 2) are derived from the first line, correspond-

ing to the application of print_int to x and the return type of

print_int x. Constraints (3, 4) are similar, and the remain-

ing constraints capture that x is a string (5) and an argument

to f and g (6, 7). There are two unsat cores in this set of

constraints—{1, 5, 6} and {3, 5, 7}—which reflect the type

mismatch between the definition of x and its use as an argu-

ment to f and g, whose parameters are used as integers.

We have already seen the first step of MYCROFT’s al-

gorithm (generating constraints). Suppose we submit those

constraints to the type solver (Step 2) and walk through four

iterations of Step 3:

• Step 3(b). The solver fails and produces a (potentially

non-minimal) unsat core. Suppose it is {1, 2, 5, 6}, which

is indeed non-minimal—constraint (2) is unnecessary. As

this is the only unsat core discovered so far, MYCROFT

selects one constraint from the unsat core, hoping to

break the conflict. To demonstrate the impact of non-

minimal unsat cores, suppose we select the extraneous

constraint (2).

• Step 3(b). In the next round, MYCROFT invokes the solver

again, withholding constraint (2). This time, suppose the

solver returns {1, 5, 6}, which happens to be minimal, as

constraint (2) is not available this round. The candidate

selection algorithm then selects the smallest set of con-

straints that overlaps with both unsat cores—an easy task

in this case, as the latter is a subset of the former. Suppose

it selects (1).

• Step 3(b). With the constraint Fin = int removed,

the solver fails and produces the remaining unsat core,

{3, 5, 7}. The algorithm selects the set {5} as the smallest

set that intersects with all three unsat cores generated so

far.

• Step 3(a). The solver succeeds with the correcting set {5}
and typing set {1, 2, 3, 4, 6, 7}.

Hence, MYCROFT produces the singleton set containing X =
string as the smallest correcting set, suggesting that the value

bound to x be changed to an integer type. As we see from

the first round, the algorithm tolerates non-minimal unsat

cores at the cost of additional rounds, because removing an

extraneous constraint does not break the underlying conflict.

Section 3.4 proves that MYCROFT terminates and produces a

minimal correcting set, even in the presence of non-minimal

unsat cores.

2.1 Constructing Human-Readable Error Reports

One advantage that correcting sets offer over other error

reporting mechanisms is that a great deal of information is

available after solving to construct a readable error report.

Specifically, for every broken constraint, the tool has access

to: (1) the constraint itself, (2) the original program point that

produced the constraint, and (3) a type assignment that arose

after all broken constraints were removed.

MYCROFT is equipped with a default pretty printer that

converts this information into a human-readable error mes-

sage. In the example above, MYCROFT produces the cor-

recting set {X = string} as well as the typing that results

from removing that constraint, where x—in order to satisfy

the remaining constraints—is typed at int . In this case, the

human-readable report reads “"hi" on line 3 is a value of type

string but should be an expression of type int.”
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Compiler writers may also supply an optional, custom

pretty printer to MYCROFT, which is a function producing a

human-readable error report from a correcting set, the origin

of the constraints therein, and the types computed for those

points after the correcting set was removed.

2.2 Targeting More Expressive Type Systems

Because MYCROFT is agnostic to the meaning of constraints,

it can easily be retargeted to complex type systems, so long

as their type inference algorithms can be expressed as type

constraint generation and solving. Our work on SJSx serves

as an example; SJSx supports mutable records, prototype

inheritance, and subtyping [3]. We have used MYCROFT to

implement type error explanation for SJSx. Because of the

richness of the SJSx type system, inference is more complex

than for Hindley-Milner languages like OCaml. Useful error

messages from the type inference engine are important here

as well. We present the details of SJSx as well as how we

augmented the SJSx type solver for MYCROFT in Section 4.3.

2.3 Relationship to Prior Work

MYCROFT is spiritually akin to MinErrLoc [20], which

proposes using weighted maximum satisfiability modulo

theories (MaxSMT) to produce minimal correcting sets.

Indeed, we had initially intended to adopt this approach

directly for SJSx, but we were stymied by two difficulties.

First, it was not obvious how to reduce type inference for

the SJSx type system to SMT—and doing so would require

abandoning the substantial work that went into developing

the type inference algorithm in the first place. Second, we

found that the MaxSMT approach does not scale to the size

of programs we anticipated.

SHErrLoc [26] also represents a notable point in this

space: SHErrLoc reports potential error locations ranked

using Bayesian techniques based on the assumption that the

programmer’s code is mostly correct. SHErrLoc requires

reducing type inference to its custom constraint language,

which we found, as with SMT, to be a daunting task for SJSx.

3. Architecture of MYCROFT

Figure 1 presents the high-level MYCROFT algorithm. Given

a program p, MYCROFT uses the compiler-writer supplied

constraint generator to extract typing constraints from the

program, which are then passed to the type solver. On failure,

the explanation engine selects a candidate correcting set

F ′, removes the correcting set from the constraint set, and

submits the resulting subset to the type solver. This cycle—

managed by the recursive function FIND_FIX—continues until

the explanation engine produces constraints on which the

type solver succeeds.

3.1 The Type Constraint Generator

The type constraint generator—TYPECGEN.Generate() on line

2 in Figure 1—analyzes the syntax of a program and produces

1 MYCROFT(p) =

2 let C = TYPECGEN.Generate(p)

3 return FIND_FIX(C, [], ∅)
4

5 FIND_FIX(Cin, L, F) =

6 let C = Cin - F

7 if TYPESOLVER.Solve(C) = sat

8 then return F

9 else let U = TYPESOLVER.UnsatCore()

10 let L′ = U::L

11 let F ′ = FindCandSet(Cin, L′)

12 return FIND_FIX(Cin, L′, F ′)

Figure 1. The MYCROFT algorithm.

a set of constraints that, if satisfied, lead to a valid typing

for the program. It is supplied to MYCROFT by the compiler

writer. The constraints can be simple or complex, driven

by the needs of the underlying type system—MYCROFT is

agnostic to the meaning of the constraints or the program

itself.

3.2 The Type Solver

The compiler-writer supplied type solver decides whether

a set of constraints leads to a valid typing. It is invoked

as TYPESOLVER.Solve() on line 7 of Figure 1. Although MY-

CROFT can make use of a type solver that simply accepts

or rejects sets of constraints, it dramatically improves per-

formance if the type solver also reports why a given set of

constraints failed in the form of an unsat core.

Lines 9–11 show where the unsat core is generated (by

TYPESOLVER.UnsatCore()) and used: An unsat core U is ap-

pended to the list of cores L generated so far and passed

to FindCandSet() to find the next candidate correcting set.

Finally, line 12 recursively invokes FIND_FIX with the latest

candidate correcting set and unsat cores.

3.3 Finding a Correcting Set

Given a program that produces a set of constraints C, the

algorithm in Figure 1 solves a combinatorial optimization

problem by searching for a set of constraints F such that

argmin
F⊆C∧sat(C−F)

| F | (8)

where sat stands for the type solver and determines whether

a set of constraints is satisfiable. In short, it seeks a minimal

correcting set F such that C − F is satisfiable. Even though

there may be many minimal solutions, we have found that

selecting one arbitrarily works well in practice (Section 7).

The core of the algorithm hinges on selecting a candidate

correcting set (the call to FindCandSet on line 11); each round

(i.e. each invocation of FIND_FIX) evaluates the best correcting

set found thus far. On failure, the function FindCandSet() uses

the most recent unsat core and all the others generated thus
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1 FindCandSet(C, L) =

2 if L is empty

3 then return ∅
4 else find c ∈ C maximizing

5 count([ l | l ∈ L, c ∈ l ])

6 let L′ = [ l | l ∈ L, c 6∈ l ]

7 return {c} ∪ FindCandSet(C, L′)

Figure 2. Greedy solution to the hitting set problem.

far to produce a new candidate correcting set. The new set

includes at least one constraint from each unsat core.

Selecting a candidate correcting set is an instance of the

hitting set problem, which is a specialization of the set cover

problem.

Definition 1 (Hitting set). Given a finite set X and a family

L of non-empty subsets of X , a set H ⊆ X is a hitting set if

it has a non-empty intersection with each S ∈ L. The hitting

set problem is the task of finding a minimal-size hitting set

given some X and L.

Appendix A shows that the hitting set problem is NP-hard by

demonstrating the relationship to the set cover problem.

Implementing FindCandSet() is a matter of solving the

hitting set problem with X instantiated with the constraints

C and L with the set of unsat cores. MYCROFT includes two

implementations of FindCandSet(): an optimal, exponential

time implementation based on a reduction to MaxSAT, and

an approximate, polynomial time implementation.

MaxSAT. MYCROFT’s optimal FindCandSet() implemen-

tation uses a Partial MaxSAT solver. A Partial MaxSAT

solver takes as input a set of hard boolean constraints (which

must be satisfied in the solution) and soft boolean constraints

(which may or may not not be satisfied in the solution) and

produces the largest set of soft boolean constraints that are

mutually satisfiable with the set of hard constraints.

MYCROFT reduces the hitting set problem on type con-

straints to Partial MaxSAT as follows. First, each type con-

straint is assigned a unique boolean variable, and each of

these boolean variables gets asserted as a soft boolean con-

straint for the Partial MaxSAT solver. Next, each unsat core

becomes a hard boolean constraint stating that at least one

boolean variable from among its type constraints must be

false. Given this input, the Partial MaxSAT solver will pro-

duce the largest set of soft boolean constraints such that at

least one boolean variable from each unsat core is false. The

complement of this set corresponds to a candidate correcting

set—i.e. a minimal set of type constraints such that every un-

sat core is covered. This approach was also taken by previous

work [20].

Greedy Set Cover. The set cover problem has a known

greedy approximation algorithm that yields a cover within

a factor of Θ(log n) of the optimal, where n is the size of

the universe of elements [6]. In the case of MYCROFT, the

universe of elements is the set of constraints appearing in any

unsat core returned by the solver (which may be much smaller

than the total set of constraints produced by the constraint

generator).

The greedy approximation algorithm for set cover gives

rise to a greedy approximation algorithm for the hitting set

problem. Figure 2 shows MYCROFT’s greedy implementation

of FindCandSet(). At each iteration, FindCandSet() finds the

constraint c that appears in (“hits”) the greatest number of

unsat cores in L. Those cores are removed from L, and the

algorithm repeats until L is empty.

Implementing FindCandSet() with an approximation algo-

rithm removes a performance bottleneck within each round

of FIND_FIX, but at the cost of precision: An imprecise correct-

ing set may contain more constraints than necessary. Since

each constraint in the correcting set corresponds to an error

message for the user, an imprecise correcting set causes the

tool to report more errors than actually exist in the program

source. Fortunately, we found this problem to be small in

practice (Section 7.4).

We finish this subsection by comparing MYCROFT with

MinErrLoc [20], which has had a strong influence on our

work. In fact, both these techniques can be seen as instantia-

tions of the algorithm presented in Figure 1.

• Where MinErrLoc invokes an SMT solver, MYCROFT in-

stead calls out to the type solver to determine satisfiability

and extract unsat cores (lines 7 and 9 in Figure 1).

• Where MinErrLoc relies on MaxSAT to find the next can-

didate correcting set each round, MYCROFT instead uses

FindCandSet() (line 11), which can be implemented by

any algorithm that solves the hitting set problem. MY-

CROFT includes two implementations of this procedure:

an optimal strategy using a conversion to MaxSAT, and

the greedy approximation shown in Figure 2.

3.4 Properties of MYCROFT

MYCROFT is guaranteed to terminate and to produce a min-

imal correcting set (or Θ(log n) approximation), provided

that certain properties hold of the type constraint generator

and solver supplied by the compiler writer.

Termination. As part of the compilation tool chain, it is

critical that MYCROFT terminates on all inputs. MYCROFT

relies on an easily-established property of the type constraint

solver to ensure termination: The solver cannot introduce

new constraints. Rather, it must return a subset of the original

constraints on failure. The termination argument hinges

on the fact that each round produces a unique candidate

correcting set not seen in previous rounds.

Lemma 1 (Candidate correcting sets are unique). If round

n (i.e. the nth invocation of FIND_FIX) produces a candidate

correcting set Fn, then there does not exist a round 0 < k <

n where Fk = Fn.
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Proof. The proof goes by induction on n, with n = 1 as

the (trivial) base case. Consider the inductive case, wherein

the nth round checks if Fn−1 is a correcting set, and if that

fails, produces a candidate correcting set Fn. If Fn−1 is not a

correcting set, then the solver will produce an unsat core Un.

By design, Fn will have a non-empty intersection with each

Ui, 0 < i ≤ n. However, Fi−1 ∩ Ui = ∅ for all 0 < i ≤ n,

because Ui is a subset of Cin−Fi−1, which are the constraints

submitted to the solver in the i’th round and those exclude the

correcting set that the previous round produces (by definition,

F0 = φ). Therefore, Fn 6= Fi−1 for all 0 < i ≤ n.

Termination follows from Lemma 1.

Theorem 1 (MYCROFT terminates). Given a program p,

MYCROFT terminates and produces a correcting set.

Proof. Each round (i.e. each invocation of FIND_FIX) either

succeeds (and terminates) or fails and selects a new, unique

subset of constraints as a candidate correcting set. There are

finitely many such subsets, and so the algorithm will even-

tually try them all. The subset containing every constraint

will succeed, because removing all constraints necessarily

removes all conflicting constraints. Hence, MYCROFT termi-

nates and returns the candidate correcting set produced on

the final round.

Note that the constraints the solver returns need not form

a minimal unsat core, and in fact, they need not form an

unsat core at all. Returning any subset of the constraints at

each iteration will ensure termination. However, non-minimal

unsat cores will degrade the efficiency of the algorithm. To

illustrate, suppose an unsat core contains a constraint c that,

when removed, does not break the conflict that generated

the core. If c is selected for the candidate correcting set,

then the conflict is not resolved, and the solver will return

another unsat core containing the same conflict (but without

the extraneous constraint c that was just removed). Hence,

overly-large unsat cores will incur additional iterations of

FIND_FIX. In the extreme case, if the constraint solver trivially

returns the entire set of constraints as the unsat core, then the

FIND_FIX procedure will degrade to iteratively exploring all

subsets of size 1, then size 2, and so on until a correcting set

is found.

Minimality. Producing minimal correcting sets excludes un-

related program points from the error explanation. MYCROFT

relies on a single property of the type solver to guarantee min-

imality: The solver must return a valid unsat core that does,

in fact, contain constraints that are unsatisfiable, although the

unsat core need not itself be minimal.

Theorem 2 (MYCROFT produces a minimal correcting set).

If MYCROFT produces a correcting set F for a program p,

then there does not exist a smaller correcting set for p.

Proof. Suppose a smaller correcting set F’ exists. Let L be

the set of unsat cores that MYCROFT used in its final round to

produce F . By the validity assumption we make of the solver,

it follows that every unsat core u ∈ L contains a conflict;

hence, to be a correcting set, F’ must hit every unsat core

u. But this is a contradiction: MYCROFT, by Definition 1,

produces a minimal hitting set F for L, but there exists a

smaller hitting set F’.

A similar argument shows that MYCROFT produces a

correcting set within a factor of Θ(log n) when a greedy

approximation of the hitting set algorithm is used, such as the

one in Figure 2.

4. Extracting Unsat Cores

We have deployed MYCROFT as an error explanation engine

for two existing languages: OCaml and SJSx. OCaml has

been the subject of prior error explanation research, allow-

ing us to compare with other work (see Section 7). SJSx is

a subset of JavaScript designed to enable aggressive static

optimizations. It is equipped with a type system that admits

mutable records, subtyping, and prototype inheritance. Tar-

geting SJSx illustrates how MYCROFT can integrate with a

complex type inference implementation.

Section 4.1 presents a general approach for augmenting

an arbitrary type constraint solver to produce unsat cores.

Sections 4.2 and 4.3 show how we specialize this approach

for the OCaml and SJSx type constraint solvers, respectively.

4.1 A General Approach to Unsat Core Tracking

There is a generic way to augment any type constraint

solver to produce an unsat core: The QuickXplain [13]

algorithm produces unsat cores from arbitrary black-box

solvers. When the set of input constraints is unsatisfiable,

QuickXplain iteratively minimizes the set of constraints until

it cannot be reduced further without becoming satisfiable.

This unsatisfiable, irreducible set of constraints is a small

unsat core. However, there is a high cost to find this unsat

core: QuickXplain may make many calls to the underlying

solver.

For many type constraint solvers, the overhead of making

many calls to the solver can be avoided by augmenting

the solver itself to track which constraints contribute to the

conflict. At a high level, constraint solvers explore subsets of

constraints, using them to compute an assignment to variables

within the constraints. Hence, we can produce an unsat core

by tracking:

• the constraints under consideration at any given time, and

• which constraints influence each type assignment.
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class CoreTracker<Constraint, Type>

def push(cs : Set<Constraint>) : Void

def pop() : Void

def recordCurrentConstraints(v : Type) : Void

def retrieveConstraints(v : Type)

: Set<Constraint>

def getCore() : UnsatCore

Figure 3. Unsat core tracking API.

As an example, consider again the following constraints
generated from the example in Section 2:

Fin = int (1)

Fout = unit (2)

Gin = int (3)

Gout = int (4)

X = string (5)

Fin = X (6)

Gin = X (7)

The solver begins by considering Fin = int and assigns

int to Fin , and so marks Fin as influenced by constraint (1).

Next, the solver considers Fout = unit , forgetting for the

moment the first constraint. The second constraint induces the

assignment of unit to Fout , and the solver marks constraint

(2) as influencing Fout .

Each constraint is so treated, until the solver reaches

constraint (6). Here, the solver observes a conflict: X has

been unified with string but Fin has been unified with int .

The solver has recorded that constraint (1) is responsible

for the former unification and constraint (5) for the latter.

Together with constraint (6), these constraints form a small

unsat core.

Figure 3 shows an API that captures the operations nec-

essary to instrument a type solver, simplifying the task of

tracking this information. Figures 4c and 5 in the following

sections give examples of its use in extracting unsat cores

from OCaml and SJSx. In this API, the push method is used

to indicate that a set of constraints is now under considera-

tion (active), and pop removes from consideration the most

recently pushed set. The recordCurrentConstraints method

is called whenever the assignment for a type changes. When

recordCurrentConstraints is called, the CoreTracker will re-

member the set of active constraints as affecting the given

type. The retrieveConstraints method returns all constraints

that have so far affected a given type, which is used when

the current assignment to one type causes a change in the

assignment of another. Finally, the getCore method returns an

unsat core consisting of all constraints that have been pushed.

Tracking a constraint set for every type variable can be

expensive. For efficiency, we use derivation trees parame-

terized by constraint types to efficiently implement the sets

(Set<Constraint>) used in CoreTracker. A derivation tree is

either empty, contains a single constraint, or is a union of two

or more derivation trees. Using this representation, each ∪
operation on constraint sets takes constant time, thus minimiz-

ing overhead. Extracting the unsat core after solving requires

walking over the tree to collect all constraints at the leaves.

This approach offers a good balance of memory usage to

run-time overhead.

The CoreTracker class is agnostic to the nature of con-

straints and types, making it applicable to arbitrary type con-

straint systems and solvers.

4.2 Unsat Cores from OCaml

As a proof of concept, we have developed a simple implemen-

tation of the OCaml type inference algorithm, in the style of

Algorithm W [7] with a separation of constraint generation

and solving akin to Rémy’s formalization [23]. We begin by

presenting a fragment of the OCaml language and show how

to augment type inference to produce unsat cores. Figure 4

shows our constraint language, generation rules, and solver

pseudocode for OCaml type inference. While we present only

a small subset of the OCaml language here (Figure 4a), our

implementation supports additional OCaml features such as

pattern matching, data type declarations, and references. MY-

CROFT does not yet support records, although we believe the

extension to be straightforward.

Type Constraint Generation. Figure 4b outlines constraint

generation, which we implemented by instrumenting the

OCaml compiler. Notably, the constraint language ranges

over type equalities, which includes generalized polymorphic

types (Poly(τ )). As a result, the constraint generator only

generates a single constraint for each occurrence of a poly-

morphic function. Other constraint systems instead copy the

constraints associated with the definition and bind them to

fresh unification variables for each occurrence, leading to an

exponentially increased number of constraints [11]. Our use

of explicit polymorphic constraints is similar to the notion of

instantiation constraints seen in some Hindley-Milner style

constraint systems [22].

Although this implementation generates relatively fewer

constraints, type solving still has worst-case exponential

time [15]. However, the lazy instantiation of Poly(τ ) yields a

large benefit: In practice, the number of constraints related

to a type is much larger than the type itself. Thus, constraint

duplication is expensive but lazy instantiation is cheap. Im-

proved performance behavior is one benefit of using a custom

constraint system rather than converting the problem into an

off-the-shelf format, and it is discussed further in Section 7.2.

Type Solving. Figure 4c shows in pseudocode the unification-

based solver for our constraint system. The algorithm is

standard, but our handling of Poly(τ ) terms deserves some

attention. Whenever a Poly(τ ) term is encountered, a fresh

copy of τ ’s current assignment is created. This mimics the

instantiation procedure from Algorithm W [7], which instan-

tiates a type with a fresh copy whenever it appears on the
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e ::= x | . . . | − 1 | 0 | 1 | . . .

| e1 e2 | λx.e | let rec x = e1 in e2

τ ::= α | Int | τ → τ | Poly(τ)

c ::= τ1 = τ2

(a) Core language containing expressions e, type terms τ , and

type constraints c.

x : τ ∈ Γ

Γ ⊢ x : τ  ∅

e ∈ Z

Γ ⊢ e : Int ∅

Γ ⊢ e1 : τ1  χ1

Γ ⊢ e2 : τ2  χ2 fresh(i) fresh(o)

Γ ⊢ e1 e2 : o χ1 ∧ χ2 ∧ τ1 = (i → o) ∧ τ2 = i

fresh(t) fresh(v) Γ, x : t ⊢ e : τ  χ

Γ ⊢ λx.e : v  χ ∧ v = (t → τ)

fresh(t)
Γ, x : t ⊢ e1 : τ1  χ1 Γ, x : Poly(t) ⊢ e2 : τ2  χ2

Γ ⊢ let rec x = e1 in e2 : τ2  t = τ1 ∧ χ1 ∧ χ2

(b) Constraint generation, written Γ ⊢ e : τ  χ, produces a

type τ and list of constraints χ for a given term e in context Γ.

def solve(cs):

a = { } # maps variable→type assignment

for c in cs:

match c with:

(τ1 = τ2) →

push(new Set(c)) ; unify(τ1, τ2, a); pop()

def unify(τ1, τ2, a):

match τ1, τ2 with:

Poly(σ), _ → unify(fresh(σ, a), τ2, a)
_, Poly(_) → unify(τ2, τ1, a)

α, _ →
if a[α]:

push(retrieveConstraints(α))

unify(a[α], τ2, a)

pop()

else:

a[α] = τ2

recordCurrentConstraints(α)

_, α → unify(τ2, τ1, a)

Int, Int → pass

(i1 → o1), (i2 → o2) →
unify(i1, i2, a)

unify(o1, o2, a)

_, _ → raise UnificationFailure( getCore() )

(c) Constraint solving.

Figure 4. Type constraint generation and solving for a subset of OCaml. Highlighted program points show where we extend

standard unification with derivation tracking to produce unsat cores.

right-hand side of a let-expression. In order to perform this

transformation safely, all constraints generated from the body

of a polymorphic function (i.e. constraints on τ ) must appear

before all polymorphic constraints generated from uses of the

polymorphic function (i.e. constraints on Poly(τ )), ensuring

the solver computes an assignment for τ before instantiating

uses of Poly(τ ). Our constraint generation rules are organized

to ensure this. Note that Algorithm W implicitly enforces

the same order of constraint unification by invoking unifica-

tion during a structural traversal of the program syntax that

explores the left-hand side of let statements before the right.

Unsat Core Generation. Calls to the unsat core tracking

API (Figure 3) have been highlighted in Figure 4c. Each

constraint in the constraint system is visited exactly once

in the solve procedure, and is pushed while the implied

unification is resolved. Whenever a type variable gets a

new value it is marked using recordCurrentConstraints, and

whenever an already-assigned variable is visited all the

contributing constraints are also pushed. Thus when getCore

is called at a failure point, all constraints that ever contributed

to the conflict will be returned.

We can see the interaction between the solver and unsat

core tracking API in more detail by revisiting the constraint

system from Section 2. For the sake of illustration, suppose

the solver first visits constraints (1), (5), and (6):

cs = {Fin = int , X = string , Fin = X}

The solver begins by selecting Fin = int from cs. Invoking

push(new Set(Fin = int)) marks that the solver is currently

considering this constraint, followed by unify(Fin, int, a).

The call to unify() matches the (α, _) case, and, as a[Fin] is

undefined, it takes the false branch of the if statement. The

solver assigns a[Fin] = int , and then

push(recordCurrentConstraints(Fin))

marks that the assignment to Fin was influenced by the

current constraints. After returning from unify(), the solver

invokes pop() to remove the constraint from the set under

consideration, making way for the next iteration of the loop

to consider the next constraint. Processing the constraint

X = string proceeds similarly.

After processing Fin = int and X = string , a =

{Fin:int, X:string}. Furthermore, the CoreTracker knows

that constraint (1) affects the type of Fin and constraint (5)

affects the type of X .

Finally the solver visits constraint Fin = X . As be-

fore, push(new Set(Fin = X)) marks this constraint as un-

der consideration and then unify(Fin, X, a) is called. Since
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Fin is a type variable and a[Fin] is defined, the solver

takes the true branch of the type variable case. Invoking

push(retrieveConstraints(Fin)) adds constraint (1) to the

set of constraints under consideration, and the solver recur-

sively invokes unify(int, X, a).

The (_, α) case reverses the arguments, invoking unify(X,

int, a), which again leads to the true branch of the (α,

_) case: Invoking push(retrieveConstraints(X)) adds con-

straint (5) to the working set of constraints.

After substituting for X , the solver recursively invokes

unify(string, int, a). This causes a UnificationFailure ex-

ception, and getCore() returns the constraints currently under

consideration, which, in this case, includes Fin = X (the con-

straint currently selected in the loop in solve()), Fin = int

(the constraint that resolved Fin ), and X = string (the con-

straint that resolved X). These constraints form an unsat

core.

4.3 Unsat Cores from SJSx

SJSx is a typed subset of JavaScript that enables aggressive

static code optimization. Based on the work of Choi et al. [5],

SJSx admits mutable records, width subtyping, prototype

inheritance, and recursive types. This section briefly outlines

the terms, types, and constraints that comprise SJSx, as

well as a high-level overview of the type solving algorithm

extended with constraint tracking to produce unsat cores. The

goal of this section is to illustrate how MYCROFT integrates

with a complex type system without a deep understanding of

the semantics of terms or constraints. Nevertheless, readers

interested in a full account of the SJSx type system and

inference algorithm can consult the published report by

Chandra et al. [3].

Type Constraint Generation. The SJSx language ranges

over integers, let bindings, variable use and declaration, ob-

jects (i.e. records with mutable fields and prototype inheri-

tance), field projection and assignment, and method attach-

ment and invocation. Much of the complexity in the SJSx type

system deals with careful tracking of the fields of objects—

whether they reside locally within an object, in its prototype

chain, or not at all—and whether the fields its methods use

are present locally. Rows, object base types and type quali-

fiers, and type variables all help define the constraint system,

which is composed of two parts: the constraints themselves,

and rejection criteria, which are a syntactically distinct form

of constraint.

The SJSx type system is a black box to MYCROFT;

the constraint generator emits conjunctions of constraints

and acceptance criteria defined in [3], and MYCROFT in

turn submits subsets of these to the solver. As part of the

SJSx implementation, we extended the constraint generation

algorithm to emit hard and soft constraints. Hard constraints

capture “obvious” facts, such as “a variable x has the same

type everywhere.” Soft constraints reflect constraints the

def solve(cs):

# normalize

replace every τ1 = τ2 in cs with τ1 <: τ2 ∧ τ2 <: τ1

# initialize

lb = { } # maps variable→lower bound

ub = { } # maps variable→upper bound

for each τ in terms(cs):

lb[τ] = ∅
ub[τ] = ∅

# solve

until fixpoint, for each c in cs:

match c with:

τ1 <: τ2 →

push(new Set(c) ∪

retrieveConstraints(τ1) ∪

retrieveConstraints(τ2))

lb[τ2] = lb[τ1] ∪ lb[τ2]

if lb[τ2] changed:

recordCurrentConstraints(τ2)

ub[τ1] = ub[τ1] ∪ ub[τ2]

if ub[τ1] changed:

recordCurrentConstraints(τ1)

pop()

...

# check

for τ in terms(cs):

push(
⋃

σ∈τ
retrieveConstraints(σ))

glb = greatestLowerBound(ub[τ])

for T in lb[τ]:

if T 6<: glb:

raise TypeError( getCore() )

pop()

Figure 5. Pseudocode implementation of the SJSx type solver.

The solver maintains upper and lower bounds for each type

variable and propagates information from the type constraints

at each iteration. Highlighted code shows where we augment

the solver to produce unsat cores.

programmer can affect, such as field access or variable

assignment. We found this extension to be straightforward.

Type Solving. Figure 5 shows the SJSx type inference

implementation in pseudocode. At a high level, the solver

associates upper and lower bounds, represented as sets of

types, with each variable in the program; each constraint

constrains these bounds. As the subtyping relation defines a

lattice, the solver iterates—propagating bounds information—

until it reaches a fixed point. Critically, constraints guide

the flow of information from the bounds of one variable to

another, which presents an opportunity to track the effects of

constraints.

The pseudocode in Figure 5 is intended to illustrate the

essence of unsat core instrumentation. For a more thorough
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treatment of the SJSx inference algorithm, we encourage the

reader to consult [3].

Unsat Core Generation. The highlighted lines in Figure 5

show the additions required to track unsat cores. As with

the OCaml solver, we push the constraints that affect each

type variable, beginning with the constraint c selected each

round, as well as any constraints involved in resolving either

type in the constraint. Whenever the assignment for a type’s

upper or lower bound changes, it is marked by a call to

recordCurrentConstraints. After the bounds have stabilized,

if any lower bound type is not a subtype of the greatest

lower bound (in the subtype lattice) of the corresponding

upper bound, then a type error exists. Invoking getCore()

produces an unsat core with the constraints that contributed

to establishing the upper and lower bounds of τ . The unsat

cores generated by the instrumented SJSx type solver are not

guaranteed to be minimal. However, we found them to be

small in practice.

A Note on Reducing SJSx Type Inference to SMT. Unsat

core generation could conceivably be achieved in SJSx by

converting the constraints to an SMT formula and using the

unsat core extraction functionality of an off-the-shelf SMT

solver. Unfortunately, several features of the SJSx type system

make the conversion impractical: The prototype chain and

field sets on objects are both difficult to model in SMT. They

can be modeled by enumerating all possible field names in

the program and producing constraints over all pairs (τ, f)
of type variables and fields, but this results in a O(V ∗ F )
blowup in the number of constraints for systems with V type

variables and F distinct field names. While only a polynomial

increase, the large number of extra constraints necessary to

model the system results in an unacceptable performance

penalty. As a result, it was more practical to augment the

existing SJSx type solver than to implement a new one on

top of SMT, and we suspect this is also the case for other

constraint-based type inference algorithms.

5. Adding Weights to Constraints

In general, there may be many valid correcting sets, reflecting

that there are generally many ways to fix a typing error.

Consider again the example from Section 2, reproduced here

for convenience.

1 let f x = print_int x in

2 let g x = x + 1 in

3 let x = "hi" in

4 f x;

5 g x

Section 2 shows how MYCROFT generates a correcting set

for this example containing a single constraint, generated

from line 3, which equates the type of x with string . This

correcting set suggests that assigning "hi" to x causes the

type violation. Changing x to type int would resolve the type

conflict, but this is not the only way to fix the program. Other

correcting sets exist, such as the correcting set that contains

constraints generated from lines 1 and 2, which corresponds

to changing how the functions f and g use their arguments.

So far, we have implicitly assumed that every constraint

is equally important and that smaller correcting sets are

better, but this may not be the case in practice. Previous

work has suggested attaching a weight to each generated

constraint [20]. MYCROFT allows compiler writers to extend

the type constraint generator to mark constraints as hard or

soft, and to label soft constraints with weights indicating their

relative importance in contributing to a type violation. This,

in turn, allows the compiler writer to influence the selection

of correcting sets.

Determining Weights: An Open Question. As we will see

in Section 7, MYCROFT produces error reports of compa-

rable quality to competing tools. It does this without using

weights on soft constraints—all soft constraints are assigned

equal weight—and with minimal use of hard constraints. Min-

ErrLoc and SHErrLoc (also included in the evaluation) use

different weighting schemes. Hence, it appears that the best

means of weight selection remains an open question, and we

hope to investigate a more systematic exploration of weight

generation in the future. The remainder of this section de-

scribes how to extend MYCROFT with weighted constraints

and how the OCaml and SJSx implementations divide con-

straints into hard and soft constraints.

5.1 Hard Constraints

Hard constraints are excluded from consideration when form-

ing a correcting set. A compiler writer may mark some con-

straints as hard constraints when it is clear they should not be

part of error explanation. MYCROFT uses hard constraints to

steer error explanation away from “glue” constraints that con-

nect conflicting uses and definitions. As an example, consider

the following program.

1 let a = 1;;

2 let b = a;;

3 let c = b;;

4 print_string c;;

Our constraint generator produces constraints that equate

a with b and b with c, but these are less interesting than the

constraints relating a with 1 and c with print_string. Marking

them as hard constraints causes MYCROFT to exclude them

from candidate correcting sets.

MYCROFT also uses hard constraints to mark parts of

the program that cannot be changed, such as the constraints

generated from type signatures of library functions. In the

example above, one of the generated constraints might be

that “print_string has a type equal to string → unit.” This

is a hard constraint, since print_string is a library function

outside of the programmer’s control.

Requirements on Hard Constraints. Because hard con-

straints are, by definition, excluded from consideration by the

error explanation engine, it is vital that they do not conflict

amongst themselves. For the two uses of hard constraints
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listed above, we found this requirement easy to satisfy. “Glue”

constraints do not introduce any new typing information;

rather, they propagate other constraints across type variables,

and so glue constraints alone cannot conflict. Library func-

tions have type annotations supplied in the context, and con-

straints that equate library function types with type variables

are marked hard. But to generate conflicting constraints, li-

brary functions must actually appear in call sites, and call

sites generate soft constraints.

5.2 Soft Constraints

Where hard constraints allow the compiler writer to con-

cretely specify constraints that should not be part of a correct-

ing set, weights on soft constraints assign relative importance

between soft constraints. Neither the OCaml nor SJSx imple-

mentations make use of weights on soft constraints; rather,

all constraints are assigned a constant weight of 1.

5.3 Extending MYCROFT with Weighted Constraints

Given a program that produces a set of hard constraints

AH , soft constraints AS , and weights w, the algorithm in

Figure 6 solves a combinatorial optimization problem similar

to Equation 8 by searching for a fix F such that

argmin
F⊆AS∧sat(AH∪AS−F)

∑

f∈F

w(f) (9)

where sat stands for the type solver and determines whether

a set of constraints is satisfiable, and w is a weighting

function for each constraint. In short, it seeks a minimal-

weight correcting set F from among the soft constraints such

that AH ∪ AS −F is satisfiable.

Figure 6 shows the core MYCROFT algorithm first pre-

sented in Figure 1 extended to account for weighted con-

straints. The constraint generator (TYPECGEN.Generate) on line

2 now produces hard constraints AH , soft constraints AS ,

and a weighting function w over the soft constraints. Line 3

enforces the requirement that hard constraints be satisfiable,

and then FIND_FIX is invoked. FIND_FIX is largely unchanged.

Weights influence the selection of the correcting set S ′ on

line 12 produced by FindCandSet.

Section 3.3 presents two mechanisms for selecting a can-

didate correcting set: MaxSAT and set cover. Conveniently,

both mechanisms extend naturally to handle weighted con-

straints, in the form of weighted MaxSAT and weighted set

cover. Using either implementation, FindCandSet will return

a minimally-weighted candidate correcting set.

5.4 Revisiting the Metatheory

Minimality (Theorem 2) also holds for MYCROFT extended

with weighted constraints: In this case, “minimal” is taken

to mean “least aggregate weight” instead of “smallest size.”

However, the termination argument (Theorem 1) must be

extended to account for hard constraints.

The termination argument relies on two properties of

MYCROFT: The candidate correcting sets produced by

1 MYCROFT(p) =

2 let w, AH, AS = TYPECGEN.Generate(p)

3 if TYPESOLVER.Solve(AH) = unsat then fail

4 else return FIND_FIX(w, AH, AS, [], ∅)
5

6 FIND_FIX(w, AH, AS, L, F) =

7 let C = (AH ∪ AS) - F

8 if TYPESOLVER.Solve(C) = sat

9 then return F

10 else let U = TYPESOLVER.UnsatCore()

11 let L′ = U::L

12 let F ′ = FindCandSet(w, AH, AS, L′)

13 return FIND_FIX(w, AH, AS, L′, F ′)

Figure 6. The MYCROFT algorithm with weighted con-

straints.

FindCandSet are unique, and constructing a candidate set con-

taining every constraint will succeed. The latter is no longer

necessarily true when weighted constraints are introduced.

Hard constraints cannot be removed, and so a candidate cor-

recting set that contains every soft constraint will still fail if

the hard constraints conflict amongst themselves. We solve

this by requiring that the hard constraints be satisfiable. As

Section 5.1 discusses, this is not an onerous burden.

6. Implementation

The core MYCROFT algorithm is implemented as a library in

Java with 662 lines of code. It is shared by the OCaml and

SJSx implementations, and it includes two versions of the

function FindCandSet() of Figure 1, which selects candidate

correcting sets. The first is a greedy approximation of the

weighted set cover problem, and the second employs MaxSAT

by calling out to Sat4j [16].

The changes necessary to instrument each solver were rela-

tively small compared to the sizes of the solvers, reflecting the

relative ease of adopting MYCROFT as an error explanation

engine. We augmented the OCaml compiler with 666 lines of

code to produce type constraints. The type solving algorithm

shown in Figure 4c was implemented in 985 lines of Java.

We estimate that less than 100 lines of code in the solver are

related to unsat core tracking, but because unsat core tracking

is a cross-cutting concern, it is difficult to measure this pre-

cisely. We added 366 and altered 531 lines of code to extend

the SJSx constraint generator to annotate constraints with

weights and extend the SJSx solver to produce unsat cores.

The magnitude of the required changes is small compared to

the size of the SJSx type inference engine, which totals more

than more than 9500 lines.

7. Evaluation

We have evaluated MYCROFT along several dimensions:
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• Error Localization Quality (Section 7.1): Compared to

other state of the art tools, how often does MYCROFT

find the correct location of a type error? We found that

MYCROFT localizes errors as well as previous approaches.

• Performance (Section 7.2): Compared to other state of

the art tools, how quickly does MYCROFT produce a

complete error report? While previous approaches require

several minutes to analyze files just 400 lines long and

time out after 30 minutes on a 1000 line program, we

found that MYCROFT can produce reports for files over

1000 lines long in less than 5 seconds.

• Greed vs. MaxSAT (Section 7.3): While MYCROFT runs

much faster in greedy approximation mode, is it worth

sacrificing minimality in correcting sets? We found that,

in practice, the greedy error report had comparable quality

to the MaxSAT report, and thus we believe the trade-off

is worthwhile.

• Qualitative Report Quality (Section 7.4): Is MYCROFT

useful in practice? We report on our experience porting

an open-source JavaScript implementation of annex, an

Othello-like game, to fit within the SJSx typing discipline.

As annex is not written in a style immediately typeable

with SJSx, this effort offered extensive interaction with

type inference error messages. We had positive experi-

ences with MYCROFT, and MYCROFT is currently the

default error explanation algorithm for SJSx.

7.1 Error Localization Quality

In this experiment, we compare the accuracy of type error

feedback obtained by MYCROFT against other state of the art

approaches. Our subject programs are student programming

assignments, generously shared with us by Lerner et al. [17].

The assignments are all short OCaml programs collected

while the students were working, and most exhibit some

defect such as a syntax error or one or more type errors.

SHErrLoc and MinErrLoc. We compare MYCROFT

against two state of the art tools: SHErrLoc and MinErr-

Loc.4 Section 8 discusses these and other approaches against

a broader background of related work, but a brief overview

of the tools themselves will help in discussing the results of

our evaluation.

At a high level, the three tools are similar: Each con-

verts the program into a set of type constraints and at-

tempts to find a constraint subset that optimizes some cri-

terion. However, each tool optimizes for a different cri-

terion. MYCROFT optimizes Equation 9 using a constant

weight of 1 for each soft constraint, but marks some con-

straints as hard. Specifically, MYCROFT’s hard constraints

encode (1) “glue” constraints that relate let-bound vari-

ables to their definitions and (2) typing constraints from

4 We are using the 2014 versions of SHErrLoc and MinErrLoc. While newer

results were published for both tools in 2015, the newer versions are not

publicly available.

Perfect Precision Recall Fail

ocamlc 27 84% 40% 0

SHErrLoc 23 72% 52% 12

MinErrLoc 27 70% 62% 6

MYCROFT (MaxSAT) 29 75% 77% 5

MYCROFT (Greedy) 28 63% 67% 4

Table 1. Comparison of error reporting quality on 50 tests.

Tools can fail on some files due to timeout or unsupported

language features (“Fail”).

Perfect Precision Recall

ocamlc 19 84% 50%

SHErrLoc 20 72% 51%

MinErrLoc 20 70% 56%

MYCROFT (MaxSAT) 21 76% 72%

MYCROFT (Greedy) 21 71% 69%

Table 2. Comparison of error reporting quality on 32 tests,

excluding tests on which any tool failed.

other modules. MinErrLoc optimizes Equation 9 using

w(f) = size of AST node associated with f . MinErrLoc

also uses hard constraints, but in a slightly different manner:

MinErrLoc’s hard constraints encode (1) global properties of

the OCaml type system required to formulate the problem for

its underlying SMT solver, (2) typing constraints from other

modules, and (3) user-defined type annotations. SHErrLoc

optimizes for a similar formula that factors in the number of

correct uses of each type variable (see Section 8.2), and does

not use hard constraints.

SHErrLoc also employs preemptive cutting [20]: It stops

generating constraints when the first type error is discovered.

Constraints that appear later in the file—which may be

relevant to the error—are ignored. As a result, SHErrLoc

is unable to discover all type errors in some files. MinErrLoc

supports preemptive cutting as an optional feature, but it is

disabled for our experiments. Perhaps surprisingly, we found

these differences to have little impact on explanation quality.

Methodology. Lerner et al. have already categorized the

programs in the dataset according to the nature of the de-

fects. These categorizations include “invalid syntax,” “type

mismatch,” “unbound variable,” and many others.

To obtain ground-truth data for correct error locations, we

randomly selected 50 files from among those categorized

with type-related defects. For each one we identified a set

of locations that—in our best judgment—corresponded to

places at which there is a fixable type error.5 We refer to our

hand-identified locations as the oracle data for the file.

5 Previous work that used this data set also did this exercise, but unfortunately

this information was not available.
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Notably, the authors of SHErrLoc used the location of

each student’s next changes as oracle data [26]. While we

referred to this data to help decide where to mark oracle

error locations, we found it to be too noisy to serve as reliable

oracle data on its own. The students often made many changes

between compiler runs, not all of which were related to the

type errors.

Having collected oracle data, we ran each tool to obtain its

set of reported locations on each file, which we then compared

to the oracle data. For some files, one or more of the tools

could not be run successfully (either due to features that the

tool does not support or because it exceeded our imposed

timeout of 180 seconds). Out of 50 files, 32 succeeded with

every tool. We report aggregate quality information for both

the complete set of 50 and the partial set of 32, though the

results are not substantially different.

Results. Table 1 shows the aggregate precision and recall for

each tool across the 50 files for which we derived oracle data.

For any particular tool and file, precision is the percentage

of program locations reported by the tool that are true error

locations according to the oracle data:

precision =
|tool_locs ∩ oracle_locs|

|tool_locs|

Recall is the percentage of oracle data locations that were

reported by the tool:

recall =
|tool_locs ∩ oracle_locs|

|oracle_locs|

The “Perfect” column reports the number of files for which

each tool scored 100% on both precision and recall. The

“Fail” column reports how many files the tool rejected due to

unsupported language features or timeout.

The numbers in Table 1 are not directly comparable since

different tools fail on different sets of files. To make a more

direct comparison possible, we also report on the 32 cases for

which all the tools completed successfully (Table 2).

Our complete results table—from which Table 1 and

Table 2 are derived—is shown in the appendix.

Details and Discussion. MYCROFT is competitive with

SHErrLoc and MinErrLoc, the other two state of the art

approaches. The OCaml compiler performs very differently

from the other tools since it is limited to only producing one

type error at a time. While it shows high precision across

our benchmark files, this number alone can be misleading:

ocamlc rarely produces a perfect error report.

In general, the tools we evaluated do well or poorly

together; there are very few programs in the Seminal dataset

on which any one tool greatly outperforms the others. The

few differences tend to arise from differences in constraint

generation or when the underlying optimization algorithms

choose arbitrarily between more than one equal-cost set,

rather than any fundamental attribute of the approach.

1 type elt = IntEntry of int | HeapEntry of heap

2

3 let rec lookup h str =

4 match h with

5 | [] → 0

6 | hd::tl → match hd with

7 | IntEntry (str1,i) →

8 if str1=str then i

9 else lookup h str

10 | HeapEntry(str2,j) →

11 if str2=str then j

12 else lookup tl str

13

14 let update h str i =

15 match i with

16 | int → IntEntry(str,i) ::h

17 | heap → HeapEntry(str,i) ::h

(a) A benchmark for which MYCROFT performs perfectly.

1 type move = (* ... *) | For of int * move list

2 let makePoly sides len =

3 For(sides, [(* ... *)])

4

5 let interpLarge (ml : move list) :

6 (float*float) list = (* ... *)

7

8 let example_logo_prog = makePoly(4, 10)

9 let ansL = interpLarge example_logo_prog

(b) A benchmark for which MYCROFT performs poorly.

Figure 7. Example programs from the Seminal dataset with

correct error locations highlighted.

As an example, consider the program in Figure 7a that

MYCROFT analyzes correctly, while the OCaml compiler,

SHErrLoc, and MinErrLoc miss one or more error sources.

The yellow highlighted lines are errors: The hd variable comes

from a list of string * elt tuples, and so the first branch, for

instance, should instead be (str1, IntEntry i). Returning j

in the second branch is also problematic, since j is a heap

and not an int. The update function, defined later in the file,

also contains two similar errors, where the student mistakenly

constructed an IntEntry and a HeapEntry out of tuples.

MYCROFT reports errors at each highlighted location. SH-

ErrLoc stops generating constraints as soon as an error is de-

tected, and so is unable to identify the last two locations. Min-

ErrLoc reports two extraneous locations: the hd in match hd

and a use of update lower in the file (not shown above).

Sometimes MYCROFT does poorly while SHErrLoc and

MinErrLoc do well, as in the case of Figure 7b. In this

example, the student has defined a function makePoly that

returns a move, but the function is passed to interpLarge,

which expects a move list. Our oracle data for this file was

based on the student’s fix: the student changed the use of

makePoly on line 8 to [makePoly 4 10.0].
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Figure 8. Run-time to analyze the Seminal files.

SHErrLoc and MinErrLoc correctly identify the second-

to-last line, while MYCROFT chooses to report the definition

of makePoly instead. Since makePoly is only used once, there is

no factor in MYCROFT’s cost function (Equation 9) to prefer

reporting the definition of makePoly or its use as the source of

the error.

7.2 Performance

Speed is a key benefit of the architecture used in MYCROFT;

in experiments we performed over the Seminal dataset and on

a larger OCaml program, MYCROFT consistently outperforms

SHErrLoc and MinErrLoc.

Methodology. Our performance evaluation consists of two

parts. First, while measuring the quality data reported in

Section 7.1, we also recorded the time each tool takes to

analyze each file, which gives a sense of the distribution of

run-time performance on small files.

Excluding comments and blank lines, none of the Seminal

files have more than 100 lines of code. To investigate scalabil-

ity on larger programs, we obtained a 1,300-line ray-tracing

program called min-rt [19]. Min-rt is an appealing evalua-

tion benchmark because it uses only simple features of the

OCaml language and so fits within the supported subset of

every tool we evaluate. We construct a number of programs

of increasing length by taking prefixes of the main min-rt file

and introducing a simple arithmetic type error in each prefix

program at approximately the middle line of the file. We then

measure the wall-clock time each tool takes to analyze each

prefix. Experiments were run on a shared compute server

with 96 cores and 512 Gb of memory. The Java heap limit

was set to 64 Gb to allow running the evaluation in parallel;

in practice, MYCROFT does not require more than 11 Mb of

memory on even the largest files in our evaluation.

Performance on the Seminal Dataset. Figure 8 shows

performance information on the Seminal dataset, plotting

total elapsed time (x-axis, log scale) against the percentage

of the selected Seminal tests completed—farther left is better.

For a closer comparison with the other tools, we evaluated

MYCROFT’s MaxSAT strategy. Even on these small files,

Total time (s)

LoC Line SHErrLoc MinErrLoc MYCROFT

91 87 0.5 1.7 0.1

121 100 0.6 2.3 < 0.1

181 137 1.2 2.7 < 0.1

242 167 1.8 3.5 0.1

336 208 42.0 8.0 0.1

466 269 - 25.8 0.4

687 399 - - 0.3

805 437 - - 0.3

970 522 - - 0.4

1234 663 - - 0.6

1327 701 - - 0.6

Table 3. Scalability data on prefixes of the min-rt program

with a 180s timeout.

MYCROFT exhibits faster and more consistent performance

than SHErrLoc or MinErrLoc. The increased performance is

the result of MYCROFT’s specialized constraint system and

solver.

Performance on Min-rt. Table 3 shows the total lines

(including blank lines and comments) of each min-rt prefix,

as well as the line mutated to induce an error, and the wall-

clock time each tool takes to analyze the file. A dash indicates

entries that timed out, either during constraint generation or

analysis. In this experiment we use MYCROFT’s MaxSAT

strategy. In all cases, every tool that completed on each file

found the correct error location.

The performance numbers show that total explanation time

grows very quickly for SHErrLoc and MinErrLoc. MYCROFT,

on the other hand, manages to construct a report for each

prefix in less than one second. Even with a 30 minute timeout,

neither SHErrLoc nor MinErrLoc complete on the full 1327

line version of min-rt.

Impact of Constraint Generation on Performance. Al-

though the performance results—particularly the min-rt

results—show MYCROFT’s potential, they also highlight

a limitation in the SHErrLoc and MinErrLoc implementa-

tions. Both tools are prone to generating a large number of

constraints in the presence of polymorphism: Because nei-

ther constraint language includes generalized polymorphic

types directly, each tool duplicates the constraints of every

polymorphic function at each application site. This problem

is a symptom of the mismatch between these tools’ constraint

languages the type system they are modeling. Since MY-

CROFT is agnostic to the underlying constraint system and

solver, we avoid this problem by supplying it with a custom

constraint system (Section 4.2) that represents polymorphic

types directly rather than eagerly duplicating constraints.

Although the scalability of SHErrLoc and MinErrLoc can

be improved with more exotic techniques [21], our results

show that MYCROFT is quite competitive, in part because
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Errs MaxSAT (s) Greedy (s)

0 0.9 1.2

2 1.1 1.3

4 1.6 1.5

6 4.0 2.6

8 109.5 2.6

10 - 3.9

Table 4. Performance of MaxSAT vs. greedy strategies as the

number of independent type errors (“Errs”) grows.

MYCROFT can take advantage of performance improvements

developed directly for type inference.

7.3 Was Greedy Computation Important?

Despite the appeal of a minimal correcting set, we found

that a greedy strategy for selecting candidate correcting sets

performs much faster than MaxSAT without sacrificing much

quality. Tables 1 and 2 include results of error message quality

using MYCROFT with both implementations. The greedy

approach matched the oracle nearly as well as the MaxSAT

approach and just as well as SHErrLoc and MinErrLoc.

Correcting set selection scales with the number of inde-

pendent errors in the file—i.e. the number of unsat cores the

algorithms must consider. To investigate performance, we

introduced additional mutations to min-rt, each introducing

an independent type error. Table 4 compares how long the

MaxSAT and greedy strategies take to produce an error report

for each mutation. The MaxSAT implementation times out

when there are more than eight independent errors, but the

greedy implementation can produce an error report in less

than 5 seconds in all cases.

Using a greedy solver by default was especially useful in

our SJSx case study. In that domain, a common use-case is

porting an ill-typed JavaScript program to well-typed SJSx.

Thus, starting with dozens of type errors was a normal state

of affairs.

7.4 MYCROFT and SJSx

We now come full circle to our starting point: We needed a

good error explanation for SJSx programs, especially when

refactoring untyped JavaScript code to be compliant with the

SJSx type system (which is a strict subset of JavaScript).

We have ported many programs to type check with SJSx,

and in a few cases we preserved the intermediate versions as

the developer iteratively resolved type errors. Unfortunately,

this porting was carried out without the benefit of MYCROFT;

the type inference engine would abort at the very first conflict.

This was not a good experience for the programmer.

After developing MYCROFT, we revisited the intermediate

snapshots to see how MYCROFT would have performed on

those versions. We present the results of our investigation on

annex, which is an Othello-like game. Beginning with the

unmodified JavaScript (without GUI support, so as to run on

commit time(s) errors time(s) errors

greedy greedy maxsat maxsat

1 36.2 14 - -

2 19.2 14 - -

3 19.4 14 - -

4 18.5 12 - -

5 15.1 10 190.0 10

6 13.3 7 18.0 7

7 12.7 6 16.0 6

8 14.7 6 22.3 7

9 10.0 4 9.6 4

10 8.0 1 7.0 1

Table 5. Running MYCROFT on snapshots of annex under

porting.

node.js), our goal was to bring annex to a state that would

type check with SJSx.

In one of the earliest annex snapshots, the old engine

(before MYCROFT) would stop with the following unhelpful

message (“meet” is a type inference operation in SJSx, and

the “X” variables are internal type variables):

cannot meet object type { | instance: X833 } with

constructor type ctor<0>[X9]() -> X8

MYCROFT produced the following output (shown in part) on

the same snapshot:

Error on line 530: read of missing property ’step’

Note: type is { evaluate: ___, ... | }

Error on line 544: wrong key type used on Array<___>

Note: type is string, expected integer

Error on line 544: wrong key type used on Array<string>

Note: type is string, expected integer

As in the min-rt experiment, we found the greedy compu-

tation of correcting sets to be important for practicality. Ta-

ble 5 shows the performance of MYCROFT on 10 snapshots

of annex. We find that in the starting snapshots—when the

correcting set is large—the greedy algorithm is crucial for

MYCROFT to run to completion. When the correcting set is

small, greedy and MaxSAT perform comparably. Table 4 also

confirms these results. Our experience with other programs

was similar. At this time, MYCROFT (with the greedy expla-

nation strategy) is the default error explanation engine in the

SJSx compiler.

7.5 Limitations and Future Work

MYCROFT is designed to work with type inference algorithms

that naturally decompose into type constraint generation and

solving. Although the SJSx type inference algorithm mostly

follows this design pattern, it adds a third stage, after solving,

where it checks that certain implicit constraints hold. For

example, the third stage checks whether, for each field access,
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the object so accessed possesses the field. Failure at this stage

still results in a typing violation.

As a result, we modified the SJSx constraint system to turn

some of these implicit constraints into explicit constraints.

With additional visibility, MYCROFT can do a better job of

diagnosing type errors. Other constraint-based error expla-

nation tools have made the same observation; they carefully

craft their constraint systems to capture the behavior they

hope to report on [11, 20].

As discussed in Section 7.1, while there may be many

minimum-size correcting sets for a given program, MYCROFT

has no heuristics for selecting between them. Picking the right

weights to best differentiate between correcting sets is still

an open problem (Section 5).

Finally, we found that the comprehensiveness of the

correcting set is not necessarily important to a programmer;

if the set is large, he or she would typically scan a few

findings, fix whatever looks straightforward, and run the tool

again. This suggests a line of future work exploring a ranking

mechanism to highlight the most important or easiest-to-fix

program points in the correcting set.

8. Related Work

MYCROFT builds on research for type inference, type error

diagnosis, and constraint solving.

8.1 Type Inference

Type inference is the task of determining the types of program

expressions in the absence of type annotations. It has been

studied extensively for languages with Hindley-Milner (HM)

style type systems [7, 23]. In particular, our conversion from

OCaml programs to constraints (Figure 4b) is directly in-

spired by previous work on understanding HM type inference

in terms of constraints [25, 18, 11, 1]. Our use of polymorphic

terms in the constraint language is atypical but was inspired

by previous work on instantiation constraints [22, 12, 8].

8.2 Type Error Diagnosis

Many modern languages have support for type inference, but

providing good error messages for ill-typed programs is a

famously hard problem with various proposed solutions.

Slicing. Type error slicing is the task of identifying all

program locations relevant to a particular type error [11].

When presenting a type error slice to the programmer, a key

problem is how to minimize the size of the slice to avoid

presenting too much irrelevant information. Unsat cores are

analogous to type error slices, but since the unsat cores are

not shown to the programmer, MYCROFT does not require

core minimization.

Source-Level Fixes. The Seminal system [17] proposes

concrete source-level changes to fix a type error. Seminal uses

the type checker as a black box and intelligently searches for

mutations to the program source that allow it to typecheck. A

set of heuristics prevents degenerate solutions such as “delete

the whole program.” When Seminal’s proposed fix is correct,

the programmer can simply copy the fix into her own program.

However, there are many potential source changes that satisfy

the type checker, and suggesting the wrong one is useless to

the programmer—finding the right set of rewriting heuristics

is hard and must be repeated for each new language.

Type-Level Fixes. More recent systems suggest type-level

fixes: They point to specific program locations and explain in

terms of types why something is wrong with that location. To

make this concrete, for the ill-typed expression not 1, Sem-

inal might suggest “replace 1 with false” while a type-level

fixer might suggest “1 has type int, but a bool is expected

here.” Not committing to a specific program change can be

an advantage—for instance, if the programmer intended true

instead of 1—but both approaches solve the localization prob-

lem by pointing to a specific program expression.

There are three major recent lines of work investigating

type-level fixes: counterfactual typing, SHErrLoc, and Min-

ErrLoc. Chen and Erwig [4] present the idea of counterfactual

typing. Their work attempts to discover potential type-level

fixes based on “variational” typing, which can track type

judgements over a space of alternatives and explore varia-

tions that would side step type failures. They offer the user a

ranked list of suggestions, starting with type fixes on single

expressions, to fixes on larger expressions. Unlike MYCROFT,

counterfactual typing is highly language dependent and has

only been studied for HM type systems.

SHErrLoc is a constraint solver which is applicable to

several static analysis diagnosis tasks [26, 27]. SHErrLoc

finds a fix F for type constraints C according to

argmin
F⊆C∧sat(C−F)

C1 |F|+ C2κ(F , C)

where C1, C2 are positive constants. The function κ(F , C)
counts the number of times that terms in F appear on

“satisfiable paths” in C, and captures the intuition that terms

used correctly in many places are unlikely to be sources

of error. Unfortunately, the notion of satisfiable paths is

difficult to define for complex type systems like SJSx. Even

for OCaml, computing κ(F , C) can be expensive.

MinErrLoc explains OCaml type errors by converting

type constraints into a form that can be solved by an off-

the-shelf SMT solver [20, 21]. MinErrLoc implements a

MaxSMT solver, allowing it to find a correcting set according

to Equation 9. MYCROFT generalizes these ideas to arbitrary

constraint systems and solvers and shows that a greedy

approximation yields substantial performance improvement

without significant loss in error reporting quality.

Dynamic Witnesses. Since static type checkers exist to

prevent run time errors, an input that produces a run time

error is a sensible explanation for the type error. Seidel et

al. [24] propose a diagnosis system that finds concrete inputs

(witnesses) that lead to bad executions. This approach is

not total; it is only able to find witnesses in 88% of the
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student programs it was evaluated on. However, it nicely

complements error localization approaches like MYCROFT,

as the two can be used side-by-side.

8.3 Constraint Systems

The task of finding a minimal-weight correcting set is the

complement of the maximum weighted satisfiability problem:

Given a set of constraints, find a maximum-weight subset that

is satisfiable. Many modern MaxSAT solvers use an unsat

core driven approach similar to the one we have described [9].

Unsat cores are also useful in the DPLL(T) framework for

solving SMT formulas [10, 2]. As a result, unsatisfiable core

extraction has been studied for a number of different con-

straint systems, including equality with uninterpreted func-

tions and linear arithmetic. The QuickXplain algorithm [13]

can even produce unsat cores for black-box constraint solvers,

and was used successfully by MinErrLoc [20].
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A. Reduction to Set Cover

Definition 2 (The hitting set problem (a.k.a. set overlap)).

Suppose we have a finite set X and a family F of non-empty

subsets of X such that every element of X belongs to at least

one subset in F:

X =
⋃

S∈F

S

A set H ⊆ X is a hitting set if it has a non-empty intersection

with each S ∈ F:

∀S ∈ F . H ∩ S 6= ∅

The problem is to find the smallest such hitting set.

The set overlap problem is a variant of the set covering

problem [14], where the task is to find a minimal-sized subset

C ⊆ F whose members cover all of X .

Theorem 3. Set overlap is NP-hard.

Proof. The proof proceeds by reducing set cover to set

overlap. Suppose we have a finite set Xc and a family Fc

of subsets of Xc as an instance of the set cover problem. Let

X be a set of unique labels for the sets in Fc, and let a set S
be in F for each x ∈ Xc such that S contains the labels for

each set in Fc that contains x. Note that X can be constructed

in O(| Fc |) and F in O(| Fc | · | Xc |).

X = {i | ∀i. Si ∈ Fc}

F = {{i | ∀i. Si ∈ Fc ∧ x ∈ Si} | ∀x. x ∈ Xc}

The set overlap problem produces a solution C such that

∀S ∈ F . C ∩ S 6= ∅.

That is, C is the smallest set of labels such that at least one

label appears in each S ∈ F . From this we construct a

minimal cover

Cc = {Si | Si ∈ Fc ∧ i ∈ C} .

To complete the proof, we show that C is a minimal overlap

if and only if Cc is a minimal cover.

If C is a minimal overlap, then Cc is a minimal cover. Note

that X holds the sets from Fc that can make up a cover, and

each set S ∈ F is the set of sets in Fc that cover a particular

element x ∈ Xc. The set overlap problem picks at set C of

elements from X such that C has a non-empty intersection

with every set in F . Critically, for a set S ∈ X to overlap

with a set Si ∈ F implies that xi ∈ S. As F contains a set

Si for each xi ∈ Xc, we have that the sets in C are exactly

the sets of Fc that cover the elements of Xc.

But suppose a smaller cover C′
c exists. We can construct

C′ = {i | Si ∈ C′
c} .

As C′
c is smaller than Cc, so too is C′ smaller than C. But

we assume that C is a minimal overlap, which implies that

there exists Si ∈ F where C′ ∩ Si = ∅. By construction,

this indicates that no set S ∈ C′
c contains xi, which is a

contradiction.

If Cc is a minimal cover, then C is a minimal overlap.

If Cc covers Xc, then for all x ∈ Xc, a set S exists such

that x ∈ S ∈ Cc. By construction, each x ∈ Xc has a

corresponding set Sx ∈ F such that S ∈ Sx. Therefore

C, which contains a label i for S , will overlap with Sx. This

holds for all x ∈ Xc, hence C overlaps with all Sx.

But suppose a smaller overlap C′ exists. Then a corre-

sponding C′
c exists smaller than Cc; but Cc is assumed to be a

minimal covering, and so there exists an element x ∈ Xc that

C′
c does not cover. By construction, there exists a set Sx ∈ F

containing exactly the labels of sets in Fc that cover x, but

none are present in C′
c and thus not in C′, which implies that

C′ ∩ Sx = ∅, a contradiction.

B. Quality Data

Table 6 shows the complete report of the summarized data

presented in Table 1 and Table 2.
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file hash ocamlc SHErrLoc MinErrLoc MYCROFT (MaxSAT) MYCROFT (Greedy)

precision recall precision recall precision recall precision recall precision recall

a64278e6 1 / 1 1 / 3 1 / 1 1 / 3 1 / 1 1 / 3 2 / 3 2 / 3 2 / 3 2 / 3

85a6929f 1 / 1 1 / 2 timeout 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2

9794c8f8 1 / 1 1 / 1 0 / 0 0 / 0 0 / 1 0 / 1 error error

0c9a7476 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

47b33057 0 / 1 0 / 1 error 0 / 1 0 / 1 0 / 1 0 / 1 1 / 1 1 / 1

72b8814e 1 / 1 1 / 1 error 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

6b0462a3 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

4a9f1fa2 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

d373092e 1 / 1 1 / 1 0 / 0 0 / 0 0 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1

fde52031 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

b5136659 0 / 1 0 / 1 0 / 1 0 / 1 1 / 1 1 / 1 0 / 1 0 / 1 1 / 1 1 / 1

996270a2 1 / 1 1 / 1 error 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

70bb62db 1 / 1 1 / 1 timeout 1 / 1 1 / 1 0 / 1 0 / 1 0 / 1 0 / 1

e583f71c 1 / 1 1 / 1 1 / 1 1 / 1 timeout 1 / 1 1 / 1 1 / 1 1 / 1

cb82b8e1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1

94e25207 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

ae971991 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1 1 / 2 1 / 1 0 / 2 0 / 1

364e8a47 1 / 1 1 / 1 timeout 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1

f6a4b5a7 1 / 1 1 / 1 1 / 1 1 / 1 timeout 1 / 1 1 / 1 1 / 1 1 / 1

b168bdf6 1 / 1 1 / 3 timeout timeout 3 / 3 3 / 3 3 / 3 3 / 3

c6e8c52f 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1

8a106f89 1 / 1 1 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2

06de74a4 1 / 1 1 / 3 1 / 1 1 / 3 3 / 3 3 / 3 3 / 4 3 / 3 3 / 4 3 / 3

4ea7768a 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

f4603d9b 1 / 1 1 / 16 timeout timeout timeout 10 / 19 10 / 16

e006ab3e 0 / 1 0 / 7 timeout timeout 6 / 8 6 / 7 4 / 8 4 / 7

4385ca75 1 / 1 1 / 1 0 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

7148e940 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 2 1 / 1

644d210e 0 / 1 0 / 6 0 / 3 0 / 6 0 / 3 0 / 6 0 / 3 0 / 6 0 / 3 0 / 6

89b393b6 1 / 1 1 / 1 0 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

14e1c11a 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

2bd355fe 1 / 1 1 / 4 2 / 2 2 / 4 2 / 5 2 / 4 error error

4deca972 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

e39cffd4 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

62b3d2f6 1 / 1 1 / 2 1 / 1 1 / 2 0 / 1 0 / 2 0 / 1 0 / 2 0 / 1 0 / 2

6cf1158b 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

5d42f721 1 / 1 1 / 6 1 / 1 1 / 6 1 / 1 1 / 6 5 / 5 5 / 6 4 / 5 4 / 6

9fc4f621 0 / 1 0 / 2 0 / 2 0 / 2 0 / 1 0 / 2 0 / 1 0 / 2 0 / 1 0 / 2

efd02f8c 1 / 1 1 / 2 0 / 0 0 / 0 0 / 1 0 / 2 2 / 3 2 / 2 1 / 3 1 / 2

c23ed191 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

e429466f 1 / 1 1 / 4 2 / 2 2 / 4 4 / 6 4 / 4 4 / 4 4 / 4 4 / 4 4 / 4

c75f0b50 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 1 / 1 1 / 1

fbae0542 1 / 1 1 / 4 timeout 4 / 5 4 / 4 3 / 5 3 / 4 3 / 5 3 / 4

8708affd 1 / 1 1 / 3 timeout 3 / 3 3 / 3 3 / 6 3 / 3 0 / 6 0 / 3

7409001b 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1

5ba718cb 1 / 1 1 / 1 0 / 1 0 / 1 0 / 1 0 / 1 error error

d434312d 0 / 1 0 / 2 1 / 2 1 / 2 timeout error error

7beaaeb5 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

4f6bd8de 1 / 1 1 / 2 timeout 2 / 2 2 / 2 2 / 2 2 / 2 2 / 3 2 / 2

633d82c9 1 / 1 1 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2

Table 6. Tool report quality broken down by file.
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