
Abstractions for

Software-defined Networks

Cole Nathan Schlesinger

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: David Walker

June 2015

c© Copyright by Cole Nathan Schlesinger, 2015.

All rights reserved.

Abstract

In a Software-Defined Network (SDN), a central, computationally powerful con-

troller manages a set of distributed, computationally simple switches. The controller

computes a policy describing how each switch should route packets and populates

packet-processing tables on each switch with rules to enact the routing policy. As

network conditions change, the controller continues to add and remove rules from

switches to adjust the policy as needed.

Recently, the SDN landscape has begun to change as several proposals for new,

reconfigurable switching architectures, such as RMT [6] and FlexPipe [42], have

emerged. These platforms provide switch programmers with many flexible tables for

storing packet-processing rules, and they offer programmers control over the packet

fields that each table can analyze and act on. These reconfigurable switch architec-

tures support a richer SDN model in which a switch configuration phase precedes the

rule population phase [5]. In the configuration phase, the controller sends the switch

a graph describing the layout and capabilities of the packet processing tables it will

require during the population phase. Armed with this foreknowledge, the switch can

allocate its hardware (or software) resources more efficiently.

This dissertation presents a new, typed language, called Concurrent NetCore, for

specifying routing policies and graphs of packet-processing tables. Concurrent Net-

Core includes features for specifying sequential, conditional, and concurrent control-

flow between packet-processing tables. We develop a fine-grained operational model

for the language and prove this model coincides with a higher-level denotational model

when programs are well-typed. We also prove several additional properties of well-

typed programs, including strong normalization and determinism. To illustrate the

utility of the language, we develop linguistic models of both the RMT and FlexPipe

architectures; give a multi-pass compilation algorithm that translates graphs and

iii

routing policies to the RMT model; and evaluate a prototype of the language and

compiler on two benchmark applications, a learning switch and a stateful firewall.

iv

Acknowledgements

Many people have helped make this dissertation possible, but none more than my

adviser. Dave, thank you for your guidance and encouragement throughout the many

years of my studies.

I thank my readers, Arjun Guha and Aarti Gupta, for their heroic efforts in

reviewing this dissertation as well as their insightful comments, and my examiners,

Nick Feamster and Jen Rexford, for their feedback on the journey from research to

writing. The result is all the stronger for it.

I have worked with wonderful collaborators at Princeton and elsewhere, including:

Michael Greenberg and Jen Rexford, both at Princeton, Nate Foster, Arjun Guha,

Dexter Kozen, Jean-Baptiste Jeannin, Carolyn Jane Anderson, Mark Reitblatt, and

Alec Story, all at Cornell, Marco Canini at UC Louvain, Nikhil Swamy, Ben Zorn,

Juan Chen, Ben Livshits, and Joel Weinberger at MSR Redmond, Hitesh Ballani,

Thomas Karagiannis, and Dimitrios Vytiniotis at MSR Cambridge, and Soudeh Ghor-

bani and Matt Caesar at UIUC. Thank you for your insight, guidance, and energy.

I am especially grateful to Nate, for his indispensable advice throughout my studies,

and to Michael, for his technical insight into our work and his encouragement to set

it aside in favor of climbing.

Tim Teitelbaum and the folks at GrammaTech helped set me on the road to

graduate school, for which I am most appreciative. And the PL, Systems, and Security

groups at Princeton have had an indelible impact on my growth as a researcher.

Thank you for the many interesting and thought-provoking discussions. To Gordon

Stewart and Josh Kroll, who began and will soon end this journey with me: Best of

luck as we continue on.

There are many pitfalls that make life as a graduate student more challenging;

thankfully, I avoided most of them with help from Michele Brown, Pamela DelOrefice,

Nicki Gotsis, Mitra Kelly, Melissa Lawson, Barbara Varga, and Nicole Wagenblast.

v

Thank you. And I will always be grateful to Laura Cummings-Abdo for feeding my

coffee addiction, and to the fine folks at Despaña for fueling the production of my

dissertation with delicious sandwiches and tapas.

And, as a final acknowledgement, Dave’s grant has my undying gratitude for the

heavy load it was made to bear.

vi

To my parents and sisters.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Figures . xi

1 Introduction 1

1.1 The Architecture of an SDN . 3

1.2 Contributions of this Dissertation . 8

1.3 Relation to Previous Work by the Author and Co-Authors 11

2 A Network Policy Language 12

2.1 Syntax and Semantics . 20

2.2 Equational Theory . 24

2.3 Policy in Practice: Network Isolation 27

3 A Pipeline Configuration Language 33

3.1 Syntax and Semantics . 39

3.2 Pipeline Models . 50

3.3 Metatheory . 58

4 Compiling from High-level Policies to Low-level Pipelines 64

4.1 Single-table Compilation . 68

4.2 Pipeline Compilation . 75

viii

4.2.1 Multicast Consolidation . 77

4.2.2 If De-nesting . 89

4.2.3 Field Extraction . 94

4.2.4 Table Fitting . 105

4.2.5 Combining the Compilation Passes 113

5 Implementation and Evaluation 120

5.1 Implementation . 120

5.2 Evaluation Setup . 121

5.3 Evaluation Results . 124

6 Related Work 131

6.1 NetKAT . 131

6.2 Concurrent NetCore . 132

6.3 Compilation . 137

7 Summary and Future Work 139

7.1 Building A Language of Actions . 140

7.2 Adopting Traditional Compilation Techniques 140

7.3 Coordinating Optimizations . 141

A Correctness of the Isolation Algorithm 143

B Correctness of the Concurrent NetCore Metatheory 161

C Correctness of the Compilation Algorithms 181

C.1 Single-table Compilation . 181

C.1.1 Star Elimination . 182

C.1.2 Switch Normal Form . 183

C.1.3 OpenFlow Normal Form . 185

ix

C.1.4 Optimizations . 198

C.1.5 Compiling to Physical Tables 199

C.2 Pipeline Compilation . 201

C.2.1 Useful Lemmas . 201

C.2.2 Refactoring Parallel Composition 204

C.2.3 Refactoring Field Modification 219

C.2.4 If De-nesting . 231

C.2.5 Table Replacement . 233

C.2.6 Dynamic Programming . 235

C.2.7 Combining Multicast Consolidation and Field Extraction . . . 237

Bibliography 240

x

List of Figures

1.1 The architecture of a software-defined network. 4

1.2 The architecture of an “OpenFlow 2.0” software-defined network. . . 7

2.1 A simple example network. 14

2.2 Syntax of NetKAT. 21

2.3 Semantics of NetKAT. 21

2.4 Equational axioms of NetKAT. 22

2.5 KAT theorems. 24

2.6 Access control code motion proof. 26

2.7 A simple network controlled by two parties. 27

3.1 Another simple example network. 35

3.2 Syntax of Concurrent NetCore. 41

3.3 Semantics of Concurrent NetCore. 44

3.4 Auxiliary functions accompanying the semantics in Figure 3.3. 45

3.5 A common model for physical tables. 53

3.6 A depiction of the RMT pipeline. 56

3.7 A linguistic model of the RMT pipeline. 56

3.8 A depiction of the FlexPipe pipeline. 57

3.9 A linguistic model of the Intel FlexPipe pipeline. 57

3.10 Typing rules for Concurrent NetCore. 59

xi

4.1 An example of the controller interacting with a virtual pipeline. . . . 65

4.2 OpenFlow Normal Form. 70

4.3 A common model for physical tables, reproduced from Figure 3.5 in

Section 3.2 for convenience. 73

5.1 The size of compiled virtual pipelines filled with a compiled population-

time update. Size measures the number of operators in the policy. . . 125

5.2 The size of compiled virtual pipelines filled with a compiled population-

time update. Size measures the number of operators in the policy. . . 126

5.3 The size of compiled virtual pipelines filled with a compiled population-

time update. Size measures the number of operators in the policy. . . 127

5.4 The wall-clock time required for compiling a virtual policy and

population-time update. 128

5.5 The wall-clock time required for compiling a virtual policy and

population-time update. 129

5.6 The memory performance of pipeline compilation on the learning

switch benchmark with twenty network events. 129

A.1 Slice desugaring. 143

4.2 OpenFlow Normal Form. 185

xii

Chapter 1

Introduction

Traditional networks are complex constructs built from special-purpose devices like

switches, routers, firewalls, load balancers, and middle-boxes. Such devices often sup-

port standard protocols for transporting data but come with proprietary interfaces

for configuration and control. Indeed, network administrators have been called “mas-

ters of complexity” for their ability to reconcile the intricate configuration details of

different devices with different interfaces from different vendors in order to bring forth

correct system-wide behavior [46]. Even still, configuration errors are responsible for

high profile outages of services like Amazon EC2 and Microsoft Azure [49, 39]. This

ad-hoc design makes it difficult to safely extend networks with new functionality and

effectively impossible to reason precisely about their behavior.

However, in recent years, a revolution has taken place with the rise of software-

defined networking (SDN). In SDN, a general-purpose controller machine manages

a collection of programmable switches. The controller responds to network events

such as newly connected hosts, topology changes, and shifts in traffic load by re-

programming the switches accordingly. This logically centralized, global view of the

network makes it possible to implement a wide variety of standard applications such

as shortest-path routing, traffic monitoring, and access control, as well as more sophis-

1

ticated applications such as load balancing, intrusion detection, and fault-tolerance

using commodity hardware.

SDN has had a tremendous impact in the networking community, both for indus-

try and academia. Google has adopted SDN to manage its internal backbone, which

transmits all its intra-datacenter traffic—making it one of the largest networks in the

world [17], and many other major companies are following Google’s lead. Indeed, the

board of the Open Networking Foundation (ONF)—the main body responsible for

defining SDN standards, such as OpenFlow [34]—includes the owners of most of the

largest networks in the world (Google, Facebook, Microsoft, etc.) and its corporate

membership numbers over a hundred. On the academic side, hundreds of participants

have attended the newly-formed HotSDN workshop, and several tracks of top net-

working conferences, such as NSDI and SIGCOMM, are dedicated to research in SDN.

But at its heart, management of SDNs is an important new programming problem

that calls for a variety of new, high-level, declarative, domain-specific programming

languages, as well as innovation in compiler design and implementation.

Software-defined networking represents open, programmatic control of networking

devices, and recent proposals from both academia and industry have called for moving

beyond the fixed-protocol processing embodied in the initial OpenFlow standards to-

ward protocol-independent packet processing [5, 48], wherein reconfigurable switching

hardware can be configured to extract and operate on arbitrary packet header fields

rather than fixed protocols. Indeed, hardware platforms are emerging to provide such

flexibility while balancing latency, cost, and power consumption [6, 42].

This dissertation presents a high-level language for specifying switch pipelines and

packet forwarding policies, along with linguistic models of concrete switch architec-

tures, and compilation algorithms for compiling from one to the other. The remainder

of this chapter introduces background material on software-defined networks, network

policy languages, and reconfigurable switching architectures.

2

1.1 The Architecture of an SDN

Figure 1.1 illustrates the basic architecture of a software-defined network, wherein a

logically centralized controller machine (or cluster of machines) manages a distributed

collection of switches. The controller is a general-purpose server whose primary job

is to decide how to route packets through the network while avoiding congestion,

managing security, handling failures, monitoring load, and informing network opera-

tors of problems. The switches, on the other hand, are specialized hardware devices

with limited computational facilities. In general, a switch implements a collection of

simple rules that match bit patterns in the incoming packets, and based on those bit

patterns, drop packets, modify their fields, forward the packets on to other switches,

or send the packet to the controller for additional, more general analysis and pro-

cessing. The switch itself does not decide what rules to implement—that job lies

with the controller, which sends messages to the switches to install and uninstall the

packet-forwarding rules needed to achieve its higher-level, network-wide objectives.

SDN is distinguished from traditional networks by its centralized, programmatic con-

trol. In contrast, traditional networks rely on distributed algorithms implemented

by the switches, and network administrators manually configure a combination of

distributed protocols and local control logic on each switch in the hope of inducing

behavior that conforms to a global (and often poorly specified) network policy.

As with any software system, the capabilities of the hardware are only available

to the controller insofar as the interface (or protocol) makes them available. At the

same time, a software stack, coupled with a run-time system, can build stronger

abstractions atop lower-level interfaces. The capabilities of both the hardware and

software abstractions have evolved inter-dependently in the SDN community in recent

years, a trend especially visible in the evolution of the OpenFlow protocol.

3

controller

switch switch switch

The controller is a
program-producing

program, often written
in a general-purpose

language like Python or
OCaml.

The controller emits a
stream of switch
configurations, called
policies.

Each switch processes
packets according to

the most recently
installed policy.

Links in the topology
carry data packets
between switches.

Figure 1.1: The architecture of a software-defined network.

OpenFlow 1.0: successes and failures. In OpenFlow 1.0, each switch is a single

table of packet-forwarding rules. Each such rule can match on one or more of twelve

standard packet fields (source MAC, destination MAC, source IP, destination IP,

VLAN, etc.) and then execute a series of actions, such as dropping the packet,

modifying a field, or forwarding it out a port. A controller can issue commands to

install and uninstall rules in the table and to query statistics associated with each

rule (e.g., the number of packets or bytes processed).

The single table abstraction was chosen for the first version of OpenFlow because

it was a “least common denominator” interface that many existing switches could

support with little change. It worked, and OpenFlow switches from several hardware

vendors, including Broadcom and Intel, hit the market quickly. The simplicity of the

OpenFlow 1.0 interface also made it a relatively easy compilation target for a wave

4

of newly-designed, high-level SDN programming languages, such as Frenetic [11],

Procera [53], Maple [54], FlowLog [40] and others.

Unfortunately, while the simplicity of the OpenFlow 1.0 interface is extremely

appealing, hardware vendors have been unable to devise implementations that make

efficient use of switch resources. Packet processing hardware in most modern ASICs is

not, in fact, implemented as a single match-action table, but rather as a collection of

tables. These tables are often aligned in sequence, so the effects of packet processing

by one table can be observed by later tables, or in parallel, so non-conflicting actions

may be executed concurrently to reduce packet-processing latency.

Each table within a switch will typically match on a fixed subset of a packet’s

fields and will be responsible for implementing some subset of the chip’s overall

packet-forwarding functionality. Moreover, different tables may be implemented us-

ing different kinds of memory with different properties. For example, some tables

might be built with SRAM and only capable of exact matches on certain fields—that

is, comparing fields against a single, concrete bit sequence (e.g. 1010001010). Other

tables may use TCAM and be capable of ternary wildcard matches, where packets

are compared to a string containing concrete bits and wildcards (e.g. 10?1??1001?)

and the wildcards match either 0 or 1. TCAM is substantially more expensive and

power-hungry than SRAM. Hence, TCAM tables tend to be smaller than SRAM.

For instance, the Broadcom Trident has an L2 table with SRAM capable of holding

∼100K entries and a forwarding table with TCAM capable of holding ∼4K entries [7].

In addition to building fixed-pipeline ASICs, switch hardware vendors are also

developing more programmable hardware pipelines. For example, the RMT design [6]

offers a programmable parser to extract data from packets in arbitrary application-

driven ways, and a pipeline of 32 physical match-action tables. Each physical table in

this pipeline may be configured for use in different ways: (1) As a wide table, matching

many bits at a time, but containing fewer rows, (2) as a narrower table, matching fewer

5

bits in each packet but containing more rows, (3) as multiple parallel tables acting

concurrently on a packet, or (4) combined with other physical tables in sequence to

form a single, multi-step logical table. Intel’s FlexPipe architecture [42] also contains

a programmable front end, but rather than organizing tables in a sequential pipeline,

FlexPipe contains a collection of parallel tables to allow concurrent packet processing,

a shorter pipeline and reduced packet-processing latency.

In theory, these multi-table hardware platforms could be programmed through the

single-table OpenFlow 1.0 interface. However, doing so has several disadvantages:

• The single OpenFlow 1.0 interface serves as a bottleneck in the compilation

process: Merging rules from separate tables into a single table can lead to an

explosion in the number of rules required to represent the same function as one

might represent via a set of tables.

• Once squeezed into a single table, the structure of the rule set is lost. Recovering

that structure and determining how to split rules across tables is a non-trivial

task, especially when the rules appear dynamically (without advance notice

concerning their possible structure) at the switch.

• Newer, more flexible chips such as RMT, FlexPipe or NetFPGAs have a config-

uration stage, wherein one plans the configuration of tables and how to allocate

different kinds of memory. The current OpenFlow protocol does not support

configuration-time planning.

Towards OpenFlow 2.0. As a result of the deficiencies of the first generation of

OpenFlow protocols, a group of researchers have begun to define an architecture for

the next generation of OpenFlow protocols [5] (See Figure 1.2). In this proposal,

switch configuration is divided into two phases: table configuration and table popu-

lation.

6

controller

switch switch

openflow 2.0 switch

Phase I:
The controller produces

a table configuration.
Phase II:
The controller populates
tables with policies.

The switch contains a pipeline
of tables that can be configured
to operate on arbitrary fields in

the packet.

The compiler fits the
table configuration to
the physical pipeline.

The compiler also
generates a transformer
to place policies in the
right tables.

table table table

compiler/
table layout
planner

generated
rule

translator

Figure 1.2: The architecture of an “OpenFlow 2.0” software-defined network.

During the table configuration phase, the SDN controller describes the abstract

set of tables it requires for its high-level routing policy. When describing these tables,

it specifies the packet fields read and written by each table, and the sorts of pat-

terns (either exact match or prefix match) that will be used. In addition, the table

configuration describes the topology of the abstract tables—the order they appear in

sequence (or in parallel) and the conditions, if any, on branches in the pipeline that

dictate when the rules within a table will be applied to a given packet.

We call the tables communicated from controller to switch abstract, because they

do not necessarily correspond directly to the concrete physical tables implemented by

the switch hardware. In order to bridge the gap between abstract and concrete tables,

7

a compiler will attempt to find a mapping between what is requested by the controller

and what is present in hardware. Figure 1.2 shows the compiler/table layout planner

as residing between the controller and the switches, because the controller logic is

defined in terms of abstract tables. But we expect that, in practice, the compiler will

map abstract to concrete tables as part of the controller infrastructure.

In the process of determining this mapping, the compiler will generate a function

capable of translating sets of abstract rules (also called an abstract policy) supplied

by the controller, and targeted at the abstract tables, into concrete rules/policy im-

plementable directly on the concrete tables available in hardware. After the table

configuration phase, and during the table population phase, the rule translator is

used to transform abstract rules into concrete ones.

The configuration phase happens on a human time scale: a network administrator

writes a policy and a controller program and runs the compiler to configure the

switches and SDN controllers on her network appropriately. Rule population, on the

other hand, happens on the time scale of network activity: a controller’s algorithm

may install, e.g., new firewall or NAT rules after observing a single packet—concrete

examples of these and other rule installations can be found in Chapter 2.

1.2 Contributions of this Dissertation

The central contribution of this dissertation is the design of a new language for pro-

gramming “OpenFlow 2.0”-style switches. This compile intermediate language is

capable of specifying high-level switch policies as well as concrete, low-level switch

architectures. We call the language Concurrent NetCore (or CNC, for short), as it

is inspired by past work on NetCore [11, 37] and NetKAT [2].1 Like NetCore and

NetKAT, Concurrent NetCore consists of a small number of primitive operations for

1Readers familiar with NetKAT and NetCore will note that our language does not contain Kleene
star, which is more useful for specifying paths across a network than policies on a single switch.
Hence, our language is a NetCore as opposed to a NetKAT.

8

specifying packet processing, plus combinators for constructing more complex packet

processors from simpler ones. Concurrent NetCore introduces the following features.

• Table specifications : Table specifications act as “holes” in an otherwise fully-

formed switch policy. These tables can be filled in (i.e., populated) later. Poli-

cies with tables serve as the phase-1 configurations in the OpenFlow 2.0 archi-

tecture. Ordinary, hole-free policies populate those holes later in the switch-

configuration process.

• Concurrent composition: Whereas NetCore and NetKAT have a form of “par-

allel composition,” which copies a packet and performs different actions on dif-

ferent copies, CNC also provides a new concurrent composition operator that

allows two policies to act simultaneously on the same packet. We use concur-

rent composition along with other features of CNC to model the RMT and Intel

FlexPipe packet-processing pipelines.

• Type System: Unlike past network programming languages, CNC is equipped

with a simple domain-specific type system. These types perform two functions:

(1) they determine the kinds of policies that may populate a table (which fields

may be read or written, for instance), and thereby guarantee that well-typed

policies can be compiled to the targeted table, and (2) they prevent interfer-

ence between concurrently executing policies, thereby ensuring that the overall

semantics of a CNC program is deterministic.

The key technical results include the following:

• Semantics for Concurrent NetCore: We define a small-step operational seman-

tics for CNC that captures the intricate interactions between (nested) concur-

rent and parallel policies. In order to properly describe interacting concurrent

actions, this semantics is structured entirely differently from the denotational

models previously defined for related languages.

9

• Metatheory of Concurrent NetCore: The metatheory includes a type system and

its proof of soundness, as well as several auxiliary properties of the system, such

as confluence and normalization of all well-typed policies. We derive reasoning

principles relating the small-step CNC semantics to a NetKAT-like denotational

model.

• Multipass compilation algorithm: We show how to compile high-level abstract

configurations into the constrained lower-level concrete configuration of the

RMT pipeline [6]. In doing so, we show how to produce policy transformation

functions that will map abstract policy updates into concrete policy updates.

We have proven many of our compilation passes correct using reasoning princi-

ples derived from our semantics. We offer this compilation as a proof of concept

of “transformations within CNC” as a compilation strategy; we believe that

many of our algorithms and transformations will be reusable when targeting

other platforms.

The remainder of this dissertation is structured as follows. Chapter 2 presents

background material on the syntax and semantics of NetKAT, as well as an ap-

plication of the equational theory in the form of a slice compilation algorithm for

inducing network isolation. Chapter 3 extends the switch-local fragment of NetKAT

for reasoning about switch pipelines, with Section 3.2 presenting linguistic models of

three pipeline architectures. Chapter 4 presents a semantics-preserving single-table

compilation algorithm (an extension of the algorithm in [2]) and goes on to describe

compilation algorithms for a full pipeline of tables. Chapter 5 implements and eval-

uates the algorithms found in Chapter 4; Chapter 6 explores related work in greater

depth; and Chapter 7 concludes with a discussion of open questions and avenues for

future work.

10

1.3 Relation to Previous Work by the Author and

Co-Authors

The technical contributions of this dissertation have grown out of joint work with

wonderful collaborators. The NetKAT language and equational theory (Chapter 2)

arose from a collaboration with Carolyn Jane Anderson, Nate Foster, Arjun Guha,

Jean-Baptiste Jeannin, Dexter Kozen, and David Walker, and first appeared in

POPL’14 [2]. A pipeline model and configuration language, called P4, was first

presented informally in [5], which I was nominally involved with as a co-author. Con-

current NetCore, which extends this language with concurrency and union operators,

an operational semantics, and proved correct compilation algorithms (Chapters 3

and 4), first appeared in ICFP’14 [45] as joint work with Michael Greenberg and

David Walker.

11

Chapter 2

A Network Policy Language

In this chapter, we explore a foundational model for network programming that (1)

identifies essential constructs for programming networks, (2) provides guidelines for

incorporating new features, and (3) unifies reasoning about switches, topology, and

end-to-end behavior. This chapter is primarily drawn from [2].

Semantic foundations. We begin our development by focusing on the global

behavior of the whole network. This is in contrast to previous languages, which have

focused on the local behavior of the individual switches. Abstractly, a network can

be seen as an automaton that shuttles packets from node to node along the links in

its topology. Hence, from a linguistic perspective, it is natural to begin with regular

expressions, the language of finite automata. Regular expressions are a natural way

to specify the packet-processing behavior of a network: a path is represented as a

concatenation of processing steps (p; q; · · ·), a set of paths is represented using union

(p + q + · · ·), and iterated processing is represented using Kleene star. Moreover,

by modeling networks in this way, we get a ready-made theory for reasoning about

formal properties: Kleene algebra (KA), a decades-old sound and complete equational

theory of regular expressions.

12

With Kleene algebra as the choice for representing global network structure, we

can turn our attention to specifying local switch-processing functionality. Fundamen-

tally, a switch implements predicates to match packets and actions that transform

and forward matching packets. Existing languages build various abstractions atop

the predicates and actions supplied by the hardware, but predicates and actions are

essential. As a consequence, a foundational model for SDN must incorporate both

Kleene algebra for reasoning about network structure and Boolean algebra for rea-

soning about the predicates that define switch behavior. Fortunately, these classic

mathematical structures have already been unified in previous work on Kleene algebra

with tests (KAT) [26].

By now KAT has a well-developed metatheory, including an extensive model the-

ory and results on expressiveness, deductive completeness, and complexity. The ax-

ioms of KAT are sound and complete over a variety of popular semantic models,

including language, relational, and trace models, and KAT has been applied suc-

cessfully in a number of application areas, including the verification of compiler op-

timizations, device drivers and communication protocols. Moreover, equivalence in

KAT has a pspace decision procedure. This paper applies this theory to a new

domain: networks.

NetKAT. NetKAT is a new framework based on Kleene algebra with tests for spec-

ifying, programming, and reasoning about networks [2]. As a programming language,

NetKAT has a simple denotational semantics inspired by that of NetCore [37], but

modified and extended in key ways to make it sound for KAT (which NetCore is not).

In this respect, the semantic foundation provided by KAT has delivered true guid-

ance: the axioms of KAT dictate the interactions between primitive program actions,

predicates, and other operators. NetKAT thus provides a foundational structure and

consistent reasoning principles that other network programming languages lack.

13

Host 1

Switch A Switch B Host 2

1 2 1 2

Figure 2.1: A simple example network.

For specification and reasoning, NetKAT also has an axiomatic semantics, char-

acterized by a finite set of equations that capture equivalences between NetKAT pro-

grams. The equational theory includes the axioms of KAT, as well as domain-specific

axioms that capture manipulations of packets. These axioms enable reasoning about

local switch processing functionality (needed in compilation and optimization) as well

as global network behavior (needed to check reachability and traffic isolation proper-

ties). The equational theory is sound and complete with respect to the denotational

semantics.

NetKAT by example. This section begins by introducing the syntax and infor-

mal semantics of NetKAT with a simple example. Consider the network shown in

Figure 2.1. It consists of two switches, A and B, each with two ports labeled 1 and

2, and two hosts. The switches and hosts are connected together in series. Suppose

we want to configure the network to provide the following services:

• Forwarding: transfer packets between the hosts, but

• Access control: block ssh packets.

The forwarding component is straightforward—program each switch to forward pack-

ets destined for host 1 out port 1, and similarly for host 2—but there are many ways

to implement the access control component. We will describe several implementations

and show that they are equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy that implements

forwarding. To a first approximation, a NetKAT policy can be thought of as a

function from packets to sets of packets. (In the next section we will generalize this

14

type to functions from lists of packets to sets of lists of packets, where the lists encode

packet-processing histories, to support reasoning about network-wide properties.) We

represent packets as records with fields for standard headers such as source address

(src), destination address (dst), and protocol type (typ), as well as two fields, switch

(sw) and port (pt), that identify the location of the packet in the network.

The most basic NetKAT policies are filters and modification. A filter (f = n)

takes an input packet pk and yields the singleton set {pk} if field f of pk equals n,

and ∅ otherwise. A modification (f ← n) takes an input packet pk and yields the

singleton set {pk ′}, where pk ′ is the packet obtained from pk by setting f to n.

To help programmers build richer policies, NetKAT also has policy combinators

that build bigger policies out of smaller ones. Parallel composition (p + q) produces

the union of the sets produced by applying each of p and q to the input packet, while

sequential composition (p; q) first applies p to the input packet, then applies q to each

packet in the resulting set, and finally takes the union of the resulting sets. Using

these operators, we can implement the forwarding policy for the switches:

p , (dst = H1; pt← 1) + (dst = H2; pt← 2)

At the top level, this policy is the union of two sub-policies. The first updates the pt

field of all packets destined for H1 to 1 and drops all other packets, while the second

updates the pt field of all packets destined for H2 to 2. The union of the two generates

the combined results of their behaviors—in other words, the policy forwards packets

across the switches in both directions.

Access control. Next, we extend the policy with access control. The simplest way

to do this is to compose a filter that blocks ssh traffic with the forwarding policy:

pac , ¬(typ = ssh); p

15

This policy drops the input packet if its typ field is ssh and otherwise forwards it using

p. Of course, a quick inspection of the network topology shows that it is unnecessary

to test all packets at all places in the network in order to block ssh traffic: packets

travelling between host 1 and host 2 must traverse both switches, so it is sufficient to

filter only at switch A:

pA , (sw = A;¬(typ = ssh); p) + (sw = B; p)

or only at switch B:

pB , (sw = A; p) + (sw = B;¬(typ = ssh); p)

These policies are slightly more complicated than the original policy, but are more

efficient because they avoid having to store and enforce the access control policy at

both switches.

Naturally, one would prefer one of the two optimized policies. Still, given these

programs, there are several questions we would like to be able to answer:

• “Are non-ssh packets forwarded?”

• “Are ssh packets dropped?”

• “Are pac, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they modify the policy

or the network itself. Note that we cannot answer them just by looking at the

policies—the answers depend on the network topology. We will see how to incorporate

the topology as a part of the NetKAT program next.

Topology. Given a program that describes the behavior of the switches, it is not

hard to define a semantics that accounts for the topology. For example, Monsanto et

16

al. [37] define a network-wide operational relation that maps sets of packets to sets

of packets by modeling the topology as a partial function from locations to locations.

At each step, the semantics extracts a packet from the set of in-flight packets, applies

the policy and the topology in sequence, and adds the results back in to the set of in-

flight packets. However, to reason syntactically about network-wide behavior we need

a uniform representation of policy and topology, not a separate auxiliary relation.

A network topology is a directed graph with switches as nodes and links as edges.

We can model the behavior of the topology as the union of policies, one for each

link in the network. Each link policy is the sequential composition of a filter that

retains packets located at one end of the link and a modification that updates the

sw and pt fields to the location at the other end of the link, thereby capturing the

effect of sending a packet across the link. We assume that links are uni-directional,

and encode bi-directional links as pairs of uni-directional links. For example, we can

model the links between switches A and B with the following policy:

t = (sw = A; pt = 2; sw← B; pt← 1) +

(sw = B; pt = 1; sw← A; pt← 2)

As of yet, most networks topologies cannot be automatically programmed, instead

requiring a certain amount of manual intervention. Hence, policies that describe

the topology can be thought of as akin to assumptions, describing how the topology

should be configured.

Switches meet topology. A packet traverses the network in interleaved steps,

processed first by a switch, then sent along the topology, and so on. In our example,

if host 1 sends a non-ssh packet to host 2, it is first processed by switch A, then

the link between A and B, and finally by switch B. This can be encoded by the

NetKAT term pac; t; pac. More generally, a packet may require an arbitrary number

of steps—in particular, if the network topology has a cycle. Using the Kleene star

17

operator, which iterates a policy zero or more times, we can encode the end-to-end

behavior of the network:

(pac; t)*; pac

Note however that this policy processes packets that enter and exit the network at

arbitrary locations, including internal locations such as on the link between switches

A and B. When reasoning about the network, it is often useful to restrict attention

to packets that enter and exit the network at specified external locations e, rather

than magically appearing on internal links:

e , (sw = A; pt = 1) + (sw = B; pt = 2)

Using this predicate, we can restrict the policy to packets sent or received by one of

the hosts:

pnet , e; (pac; t)*; pac; e

More generally, the input and output predicates may be distinct:

in; (p; t)*; p; out

We call a network modeled in this way a logical crossbar [33], since it encodes the

end-to-end processing behavior of the network (and elides processing steps on internal

hops). This encoding is inspired by the model used in Header Space Analysis [23].

Section 2.1 discusses a more refined encoding that models hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning problems and investigate

whether the logical crossbar pnet correctly implements the specified forwarding and

access control policies. It turns out that these questions, and many others, can be

reduced to policy equivalence. We write p ≡ q when p and q return the same set of

packets on all inputs, and p ≤ q when p returns a subset of the packets returned by

18

q on all inputs. Note that p ≤ q can be treated as an abbreviation for p+ q ≡ q. To

establish that pnet correctly filters all ssh packets, we check the following equivalence:

(typ = ssh; pnet) ≡ drop

To establish that pnet correctly forwards non-ssh packets from H1 to H2, we check

the following inclusion:

(¬(typ = ssh); sw = A; pt = 1; sw← B; pt← 2)

≤ (¬(typ = ssh); sw = A; pt = 1; pnet; sw = B; pt = 2)

and similarly for non-ssh packets H2 to H1. Lastly, to establish that some traffic can

get from port 1 on switch A to port 2 on switch B, we check the following:

(sw = A; pt = 1; pnet; sw = B; pt = 2) 6≡ drop

Of course, to actually check these equivalences, we need a proof system. NetKAT

is designed to not only be an expressive programming language, but also one that

satisfies the axioms of a Kleene algebra with tests (KAT). Moreover, by extending

KAT with additional axioms that capture the domain-specific features of networks,

the equational theory is complete—i.e., it can answer all the questions posed in this

section, and many more. The following sections present the syntax, semantics, and

equational theory of NetKAT formally (Sections 2.1 and 2.2), and illustrate its effec-

tiveness through an extended example investigating program isolation (Section 2.3).

Later chapters will show how to extend NetKAT and its equational theory to rea-

son about a more sophisticated programming model that accounts for reconfigurable

packet-processing hardware.

19

2.1 Syntax and Semantics

This section defines the NetKAT syntax and semantics formally.

Preliminaries. A packet pk is a record with fields f1, . . . , fk mapping to fixed-width

integers n. We assume a finite set of packet headers, including Ethernet and ip source

and destination addresses, vlan tag, tcp and udp ports, along with special fields for

the switch (sw), port (pt), and payload. For simplicity, we assume that every packet

contains the same fields. We write pk .f for the value in field f of pk , and pk [f := n]

for the packet obtained by updating field f of pk with n.

To facilitate reasoning about the paths a packet takes through the network, we

maintain a packet history that records the state of each packet as it travels from switch

to switch. Formally, a packet history h is a non-empty sequence of packets. We write

pk ::〈〉 to denote a history with one element, pk ::h to denote the history constructed by

prepending pk on to h, and 〈pk 1, . . . , pkn〉 for the history with elements pk 1 to pkn.

By convention, the first element of a history is the current packet; other elements

represent older packets. We write H for the set of all histories, and P(H) for the

powerset of H.

Syntax. Syntactically, NetKAT expressions are divided into two categories: pred-

icates (a, b, c) and policies (p, q, r). Predicates include constants true (id) and false

(drop), matches (f = n), and negation (¬a), disjunction (a + b), and conjunction

(a; b) operators. Policies include predicates, modifications (f ← n), union (p + q)

and sequential (p; q) composition, iteration (p*), and a special policy that records

the current packet in the history (dup). The complete syntax of NetKAT is given in

Figure 2.2. By convention, (*) binds tighter than (;), which binds tighter than (+).

Hence, a; b+ c; d* is the same as (a; b) + (c; (d*)).

Semantics. Semantically, every NetKAT predicate and policy denotes a function

that takes a history h and produces a (possibly empty) set of histories {h1, . . . , hn}.

20

Syntax

Fields f ::= f1 | · · · | fk
Packets pk ::= {f1 = v1, · · · , fk = vk}

Histories h ::= pk ::〈〉 | pk ::h

Predicates a, b, c ::= id Identity
| drop Drop
| f = n Match
| a+ b Disjunction
| a; b Conjunction
| ¬a Negation

Policies p, q, r ::= a Filter
| f ← n Modification
| p+ q Parallel composition
| p; q Sequential composition
| p* Kleene star
| dup Duplication

Figure 2.2: Syntax of NetKAT.

Semantics

JpK ∈ H→ P(H)

JidK h , {h}
JdropK h , ∅

Jf = nK (pk ::h) ,

{
{pk ::h} if pk .f = n
∅ otherwise

J¬aK h , {h} \ (JaK h)

Jf ← nK (pk ::h) , {pk [f := n]::h}
Jp+ qK h , JpK h ∪ JqK h

Jp; qK h , (JpK • JqK) h

Jp*K h ,
⋃
i∈N F

i h

where F 0 h , {h} and F i+1 h , (JpK • F i) h

JdupK (pk ::h) , {pk ::(pk ::h)}

Figure 2.3: Semantics of NetKAT.

21

Kleene Algebra Axioms

p+ (q + r) ≡ (p+ q) + r KA-Plus-Assoc

p+ q ≡ q + p KA-Plus-Comm

p+ drop ≡ p KA-Plus-Zero

p+ p ≡ p KA-Plus-Idem

p; (q; r) ≡ (p; q); r KA-Seq-Assoc

id; p ≡ p KA-One-Seq

p; id ≡ p KA-Seq-One

p; (q + r) ≡ p; q + p; r KA-Seq-Dist-L

(p+ q); r ≡ p; r + q; r KA-Seq-Dist-R

drop; p ≡ drop KA-Zero-Seq

p; drop ≡ drop KA-Seq-Zero

id + p; p* ≡ p* KA-Unroll-L

q + p; r ≤ r⇒ p*; q ≤ r KA-Lfp-L

id + p*; p ≡ p* KA-Unroll-R

p+ q; r ≤ q⇒ p; r* ≤ q KA-Lfp-R

Additional Boolean Algebra Axioms

a+ (b; c) ≡ (a+ b); (a+ c) BA-Plus-Dist

a+ id ≡ id BA-Plus-One

a+ ¬a ≡ id BA-Excl-Mid

a; b ≡ b; a BA-Seq-Comm

a;¬a ≡ drop BA-Contra

a; a ≡ a BA-Seq-Idem

Packet Algebra Axioms

f ← n; f ′ ← n′ ≡ f ′ ← n′; f ← n, if f 6= f ′ PA-Mod-Mod-Comm

f ← n; f ′ = n′ ≡ f ′ = n′; f ← n, if f 6= f ′ PA-Mod-Filter-Comm

dup; f = n ≡ f = n; dup PA-Dup-Filter-Comm

f ← n; f = n ≡ f ← n PA-Mod-Filter

f = n; f ← n ≡ f = n PA-Filter-Mod

f ← n; f ← n′ ≡ f ← n′ PA-Mod-Mod

f = n; f = n′ ≡ drop, if n 6= n′ PA-Contra∑
i

f = i ≡ id PA-Match-All

Figure 2.4: Equational axioms of NetKAT.

22

Producing the empty set models dropping the packet (and its history); producing

a singleton set models modifying or forwarding the packet to a single location; and

producing a set with multiple histories models modifying the packet in several ways

or forwarding the packet to multiple locations. Note that policies only ever inspect

or modify the first (current) packet in the history. This means implementations need

not actually record histories—they are only needed for reasoning.

Figure 2.3 defines the denotational semantics of NetKAT. There is no separate

definition for predicates—every predicate is a policy, and the semantics of (;) and

(+) are the same whether they are composing policies or predicates. The syntactic

distinction between policies and predicates arises solely to ensure that negation is

only applied to a predicate, and not, for example, to a policy such as p*. Formally,

a predicate denotes a function that returns either the singleton {h} or the empty set

∅ when applied to a history h. Hence, predicates behave like filters. A modification

(f ← n) denotes a function that returns a singleton history in which the field f of the

current packet has been updated to n. Parallel composition (p+q) denotes a function

that produces the union of the sets generated by p and q, and sequential composition

(p; q) denotes the Kleisli composition (•) of the functions p and q, where the Kleisli

composition of functions of type H→ P(H) is defined as:

(f • g) x ,
⋃
{g y | y ∈ f x} .

Policy iteration p* is interpreted as a union of semantic functions Fi of h, where

each Fi is the Kleisli composition of function denoted by p i times. Finally, dup

denotes a function that duplicates the current packet and adds it to the history.

Since modification updates the packet at the head of the history, dup “freezes” the

current state of the packet and makes it observable.

23

KAT-Invariant If a; p ≡ p; a then a; p* ≡ a; (p; a)* Lemma 2.3.2 in [26]
KAT-Sliding p; (q; p)* ≡ (p; q)*; p Identity 19 in [26]
KAT-Denesting p*; (q; p*)* ≡ (p+ q)* Identity 20 in [26]
KAT-Commute If for all atomic x in q,

x; p ≡ p;x then q; p ≡ p; q Corollary of Lemma 4.4 in [3]

Figure 2.5: KAT theorems.

2.2 Equational Theory

NetKAT, as its name suggests, is an extension of Kleene algebra with tests. Formally,

a Kleene algebra (KA) is an algebraic structure (K, +, ·, *, 0, 1), where K is an

idempotent semiring under (+, ·, 0, 1), and p*·q (respectively q ·p*) is the least solution

of the affine linear inequality p · r + q ≤ r (respectively r · p+ q ≤ r), where p ≤ q is

an abbreviation for p+ q = q. The axioms of KA are listed in Figure 2.4. The axioms

are shown in the syntax NetKAT, which uses the more suggestive names ;, drop, and

id for ·, 0, and 1, respectively.

A Kleene algebra with tests (KAT) is a two-sorted algebra

(K, B, +, ·, *, 0, 1, ¬)

with ¬ a unary operator defined only on B, such that

• (K, +, ·, *, 0, 1) is a Kleene algebra,

• (B, +, ·, ¬ , 0, 1) is a Boolean algebra, and

• (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

Elements of B and K are usually called tests and actions respectively; we will identify

them with NetKAT predicates and policies. The axioms of Boolean algebra consist of

the axioms of idempotent semirings (already listed as KA axioms) and the additional

axioms listed in Figure 2.4.

24

It is easy to see that NetKAT has the required syntactic structure to be a KAT.

However, the KAT axioms are not complete for the underlying NetKAT packet model.

To establish completeness, we also need the packet algebra axioms listed in Figure 2.4.

The first three axioms specify commutativity conditions. For example, PA-Mod-

Mod-Comm states that assignments src ← X and dst ← Y can be applied in either

order, as src and dst are different:

src← X; dst← Y ≡ dst← Y ; src← X

Similarly, axiom PA-Mod-Filter-Comm states that the assignment src ← X and

predicate sw = A can be applied in either order. The axiom PA-Dup-Filter-Comm

states that every predicate commutes with dup. Interestingly, only this single axiom is

needed to characterize dup in the equational theory. The next few axioms characterize

modifications. The PA-Mod-Filter axiom states that modifying a field f to n and

then filtering on packets with f equal to n is equivalent to the modification alone.

Similarly, the axiom PA-Filter-Mod states that filtering on packets with field f equal

to n and then modifying that field to n is equivalent to just the filter. PA-Mod-Mod

states that only the last assignment in a sequence of assignments to the same f has any

effect. The last two axioms characterize filters. The axiom PA-Contra states that

a field cannot be equal to two different values at the same time. Finally, the axiom

PA-Match-All states that the sum of filters on every possible value is equivalent

to the identity. This implies packet values are drawn from a finite domain, such as

fixed-width integers.

A simple example: access control. To illustrate the NetKAT equational theory,

we prove a simple equivalence using the policies from the beginning of this chapter.

Recall that the policy pA filtered ssh packets on switch A while pB filtered ssh packets

on switch B. We prove that these programs are equivalent on ssh traffic going from

25

in; (pA; t)*; pA; out

≡ { definition in, out , and pA }
sA; ssh; ((sA;¬ssh; p+ sB; p); t)*; pA; sB

≡ { KAT-Invariant }
sA; ssh; ((sA;¬ssh; p+ sB; p); t; ssh)*; pA; sB

≡ { KA-Seq-Dist-R }
sA; ssh; (sA;¬ssh;p; t; ssh + sB; p; t; ssh)*; pA; sB

≡ { KAT-Commute }
sA; ssh; (sA;¬ssh; ssh; p; t+ sB; p; t; ssh)*; pA; sB

≡ { BA-Contra }
sA; ssh; (sA; drop; p; t+ sB; p; t; ssh)*; pA; sB

≡ { KA-Seq-Zero, KA-Zero-Seq,KA-Plus-Comm, KA-Plus-Zero }
sA; ssh; (sB; p; t; ssh)*; pA; sB

≡ { KA-Unroll-L }
sA; ssh; (id + (sB; p; t; ssh); (sB; p; t; ssh)*); pA; sB

≡ { KA-Seq-Dist-L and KA-Seq-Dist-R }
(sA; ssh; pA; sB)+

(sA; ssh; sB; p; t; ssh; (sB; p; t; ssh)*; pA; sB)

≡ { KAT-Commute }
(sA; sB; ssh; pA)+

(sA; sB; ssh; p; t; ssh; (sB; p; t; ssh)*; pA; sB)

≡ { PA-Contra }
(drop; ssh; pA)+

(drop; ssh; p; t; ssh; (sB; p; t; ssh)*; pA; sB)

≡ { KA-Zero-Seq, KA-Plus-Idem }
drop

≡ { KA-Seq-Zero, KA-Zero-Seq, KA-Plus-Idem }
sA; (pB; t)*; (ssh; drop; p+ sB; drop; p; sB)

≡ { PA-Contra and BA-Contra }
sA; (pB; t)*; (ssh; sA; sB; p+ sB; ssh;¬ssh; p; sB)

≡ { KAT-Commute }
sA; (pB; t)*; (ssh; sA;p; sB + ssh; sB;¬ssh; p; sB)

≡ { KA-Seq-Dist-L and KA-Seq-Dist-R }
sA; (pB; t)*; ssh; (sA; p+ sB;¬ssh; p); sB

≡ { KAT-Commute }
sA; ssh; (pB; t)*; (sA; p+ sB;¬ssh; p); sB

≡ { definition in, pB, and out }
in; (pB; t)*; pB; out

Figure 2.6: Access control code motion proof.

26

Host 1

Host 4

Switch A Switch B

Host 3

Host 2

1

2

3

1

3

2

Figure 2.7: A simple network controlled by two parties.

left to right across the network topology shown in Figure 2.1. This can be seen as a

simple form of code motion—moving the filter from switch A to switch B. We use

the logical crossbar encoding with input and output predicates defined as follows:

in , (sw = A; typ = ssh) and out , (sw = B)

The proof, given in Figure 2.6, is a straightforward calculation using the equational

axioms and some standard KAT theorems, listed in Figure 2.5. The shaded term on

each line indicates a term that will be changed in the next proof step. To lighten the

notation we write sA for (sw = A) and similarly for sB, and ssh for (typ = ssh).

2.3 Policy in Practice: Network Isolation

NetKAT’s policy combinators help programmers construct rich network policies out

of simpler parts. The most obvious combinator is union, which combines two smaller

policies into one that, intuitively, provides the “union” of both behaviors. But naive

use of union can lead to undesirable results due to interference between the packets

generated by each sub-policy. This section explores how to use NetKAT’s equational

theory to reason about interference and presents a lightweight abstraction for enforc-

ing isolation.

27

Example. Consider the network in Figure 2.7. Now, suppose the task of routing

traffic between hosts 1 and 2 has been assigned to one programmer, while the task of

routing traffic between hosts 3 and 4 has been assigned to another programmer. The

first programmer might produce the following policy for switch B,

pB1 , sw = B; (pt = 1; pt← 2 + pt = 2; pt← 1)

and the other programmer might produce a similar switch policy for B. This second

policy differs from the first only by sending traffic from port 1 out port 3 rather than

port 2:

pB2 , sw = B; (pt = 1; pt← 3 + pt = 3; pt← 1)

Similar policies pA1 and pA2 define the behavior at switch A. Assume a topology

assertion t that captures the topology of the network. By itself, the program

((pA1 + pB1); t)*

correctly sends traffic from host 1 to host 2. But when the second policy is added in,

(((pA1 + pB1) + (pA2 + pB2)); t)*

packets sent from host 1 will be copied to host 4 as well as host 2. In this instance,

union actually produces too many behaviors. In the best case, sending additional

packets to host 4 from host 1 leads to network congestion. In the worst case, it may

violate the security policy for host 1. Either case demonstrates the need for better

ways of composing forwarding policies.

Slices. A network slice [14] is a lightweight abstraction that facilitates modular

construction of routing policies. Intuitively, a slice defines a piece of the network that

28

may be programmed independently. A slice comes with ingress (in) and egress (out)

predicates, which define its boundaries, as well as an internal policy p. Packets that

match in are injected into the slice. Once in a slice, packets stay in the slice and obey

p until they match the predicate out, at which point they are ejected. We write slices

as follows:

{in} w : (p) {out}

where in and out are the ingress and egress predicates and p defines the internal

policy. Each slice also has a unique identifier w to differentiate it from other slices in

a network program.1

It is easy to define slices by elaboration into NetKAT. We first create a new header

field tag to record the slice to which the packet currently belongs.2 In order for our

elaboration to have the desired properties, however, the tag field must not be used

elsewhere in the policy or in the ingress or egress predicates. We call a predicate

tag-free if it commutes with any modification of the tag field, and a policy tag-free if

it commutes with any test of the tag field.

Given tag-free predicates in, out and policy p, and a tag w0 representing packets

not in any slice, we can compile a slice into NetKAT as follows:

L{in} w : (p) {out}Mw0 ,

let pre = (tag = w0; in; tag← w + tag = w) in

let post = (out; tag← w0 + ¬out) in

(pre; p; post)

Slice compilation wraps the slice policy with pre- and post-processing policies, pre

and post. The pre policy tests whether a packet (i) is outside the slice (tagged with

w0) and matches the ingress predicate, in which case it is injected by tagging it with

1The unique identifier w may be defined by the compiler and need not actually appear in the
surface syntax.

2In practice, the vlan field is often used to differentiate different classes of network traffic [56].

29

w, or (ii) has already been injected (already tagged with w). Once injected, packets

are processed by p. If p emits a packet that matches the egress predicate out, then

post strips the tag, restoring w0. Otherwise, the packet remains in the slice and is

left unmodified.

Isolation. A key property of slices is that once a packet enters a slice, it is processed

solely by the slice policy until it is ejected, even across multiple hops in the topology.

Theorem 1. Slice Composition

For all tag-free slice ingress and egress predicates in, out, identifiers w, policies

s, q, tag-free policies p, and topologies t, such that

• s = L{in} w : (p) {out}Mw0,

• H0: w 6= w0,

• H1: out; t; dup; q ≡ drop,

• H2: q; t; dup; in ≡ drop,

• H3: q drops w-tagged traffic, then

((s+ q); t; dup)* ≡ (s; t; dup)* + (q; t; dup)*

Proof. The proof proceeds by induction on the structure of the policy p. This theorem

appears as Theorem 7 in Appendix A, which presents the proof in full.

If the preconditions are met, including that the policy q neither processes traffic

tagged with w nor sends traffic into or receives traffic from the boundary of s, then the

theorem says that pushing a packet through a network executing s and q in parallel

is the same as copying that packet and pushing it through two separate copies the

network, one containing the slice and the other containing q. The proof of the theorem

30

is by equational reasoning and makes use of the KAT-Denesting lemma from Figure

2.5. (This theorem appears as Theorem 7 in Appendix A, which presents a full proof.)

An interesting corollary of the result above is that when the ingress slice boundary

of s and the domain q do not overlap, and one restricts attention to traffic destined

for the ingress of s, running s in parallel with q is equivalent to running s alone.

Corollary 1. For all tag-free slice ingress and egress predicates in and out, identifiers

w, policies s, q, and topologies t, such that

• s = L{in} w : (p) {out}Mw0,

• H0: w 6= w0,

• H1: out; t; dup; q ≡ drop,

• H2: q; t; dup; in ≡ drop,

• H3: in; q ≡ drop, then

in; tag = w0; ((s+ q); t; dup)*

≡ in; tag = w0; (s; t; dup)*

Proof. This corollary appears as Corollary 2 in Appendix A, which presents the proof

in full.

Looking closely at Corollary 1, one can see a connection to traditional language-

based information flow properties [44]. Think of s as defining the public, low-security

data and q as defining the private, high security data. Under this interpretation,

observable behavior of the network remains unchanged regardless of whether the

high-security data (q) is present or replaced by some alternate high security data (q′).

Example, redux. Slices provide a solution to the scenario described in the example

at the beginning of the section. We can assign each programmer a unique slice with

31

boundaries that correspond to the locations of the end hosts under control of that

slice. For instance, the first programmer’s in and out predicates include the network

access points for hosts 1 and 2, while the second programmer’s in and out predicates

include the network access points for hosts 3 and 4.

in1 = sw = A; pt = 1 + sw = B; pt = 2

out1 = sw = A; pt = 1 + sw = B; pt = 2

s1 = {in1} w1 : (pA1 + pB1) {out1}

in2 = sw = A; pt = 3 + sw = B; pt = 3

out2 = sw = A; pt = 3 + sw = B; pt = 3

s2 = {in2} w2 : (pA2 + pB2) {out2}

The original difficulty with this example manifested as packet duplication when a

packet was sent from host 1 to host 2. Corollary 1 shows that slices solve the problem:

host 1 is connected to slice 1, and restricting the input to that of slice 1 implies that

the behavior of the entire program is precisely that of slice 1 alone.

Toward pipelines and reconfiguration. The examples in this chapter make no

assumptions about the shape of the underlying pipelines on switches in the network,

other than to assume that each match and modification can be implemented in the

hardware. Indeed, in this setting, we rely on each switch to implement the OpenFlow

1.0 protocol. The next chapter explores how to extend the switch-specific fragment

of NetKAT to configure and interact with a more sophisticated pipeline abstraction.

32

Chapter 3

A Pipeline Configuration Language

The NetKAT language of the previous chapter was developed in the context of Open-

Flow 1.0, with the intention of compiling NetKAT policies to configure switches that

expose a single table of rules for packet processing. But modern switch architectures

contain pipelines with many tables, and using a single table as a narrow waist—that

is, compiling to a single table, and then distributing that table into a pipeline of

tables—is inefficient, because it loses much of the structure of the original policy

that can guide the deployment to a multi-table pipeline. In this chapter, we explore

modifications to the NetKAT language for configuring and reasoning about multi-

table switching pipelines. Intuitively, extending NetKAT is a natural approach; after

all, a pipeline of tables strongly resembles a network of switches, at least from the

perspective of packet forwarding.

We begin by restricting NetKAT in two ways. As our focus now lies within a single

switch, we exclude statements that modify the logical “switch” field, such as sw← A,

found in modeling topological links in the previous chapter. Similarly, the Kleene

star construct, which characterizes unbounded iteration, has less relevance within the

hard bounds of switching hardware, and so we remove it as well. We add to this

base—which might be called switch-local NetKAT—primitives and combinators that

33

characterize switch pipelines, and we call the resulting language Concurrent NetCore,

or CNC for short.

We introduce CNC through a series of examples, starting with user policies that

define high-level packet processing, and then showing how CNC can model low-level

switching hardware, before continuing with a formal presentation of the syntax and

semantics (Section 3.1), detailed models of the Barefoot Networks’ RMT and Intel’s

FlexPipe switch pipelines that are in production or under development today, and

metatheoretical results (Section 3.3). Because CNC can model both ends of the

spectrum, it can serve as a common intermediate language within an OpenFlow 2.0

compilation system. Chapter 4 illustrates this idea via algorithms that demonstrate

how to transform our high-level user policies into a form that fits within the tables

of the RMT pipeline.

CNC by example. Consider the illustration in Figure 3.1, which depicts several

devices—a switch, a controller, a server and a DPI1 box—as well as a link to “the

internet.” The switch has four ports (labelled 1, 2, 3, 4 in the picture) that connect

it to the other devices and to the internet. Our goal is to write a policy for the switch

that filters disallowed traffic, forwards permitted traffic, and diverts some traffic to

the DPI box as part of a continually evolving intrusion-detection strategy.

Using the same notation as in the previous chapter, we can implement the follow-

ing firewall w on the switch in Figure 3.1. It admits ssh or http traffic on port 1, but

blocks all other traffic arriving on port 1. All traffic is allowed on ports other than 1.

(Note that ; associates more tightly than +.)

w , in = 1; (typ = ssh+ typ = http) + ¬(in = 1)

1DPI is deep packet inspection, a form of network security monitoring that inspects not just
packet headers but their payloads as well.

34

internet switch

controller

DPI

server

1

4
3

2

Figure 3.1: Another simple example network.

We can also define a simple, static forwarding policy that forwards packets from port

1 to port 2 and from port 2 to port 1.

r , in = 1; out← 2 + in = 2; out← 1

However, in order to serve as a configuration language for OpenFlow 2.0, we need

a few more policy operators along with a simple type system for policies. First, the

policies so far are completely static. They offer no room for populating new packet-

processing rules at run time. To admit this kind of dynamic extension of static

policies, we add typed table variables, which we write (x : τ). For example, we write

(x : ({typ, src} , {out})) to indicate that the controller may later install new rules in

place of x, and any such rules will only read from the typ and src header fields and

write to the out field. The controller could use this table to dynamically install rules

that forward selected subsets of packets to the DPI box for additional scrutiny. The

typing information informs the switch of the kind of memory it needs to reserve for

the table x (in this case, memory wide enough to be able to hold patterns capable of

matching on both the typ and src fields).

35

A second key extension is concurrency, written p1 || p2. In order to reduce packet-

processing latency within a switch, one may which to execute p1 and p2 concurrently

on the same packet (rather than making copies). The latter is only legal provided

there is no interference between subpolicies p1 and p2. In CNC, interference is pre-

vented through the use of a simple type system. This type system prevents concurrent

writes and ensures determinism of the overall packet-processing policy language.

As an example, consider the following policy p, which assembles each of the com-

ponents described earlier. This policy checks for compliance with the firewall w while

concurrently implementing a routing policy. The routing policy statically routes all

packets to the server (this is the role of r) while dynamically selecting those packets

to send to the DPI box (this is the role of x).

m , (x : ({typ, src} , {out}))

p , w || (r +m)

In essence, we have a form of speculative execution here. The policy r + m is spec-

ulatively copying the packet and modifying it’s out field while the firewall decides

whether to drop it. If the firewall ultimately decides to drop the packet (e.g. because

it is neither an SSH nor HTTP packet), then the results of routing and monitoring

are thrown away. If the firewall allows the packet, then we have already computed

how many copies of the packet are going out which ports. This kind of speculative

execution is safe and deterministic when policies are well-typed.

If statements. As an aside, it is worth noting that the multicast combinator also

serves as a form of disjunction. For example, consider the policy a; p + ¬a; q. The

packet splits into two copies, but the predicates on the left- and right-hand sides of

+ are disjoint—at least one copy will always be dropped. Hence, this particular form

never actually produces multiple packet copies. It is useful to know syntactically that

36

no multicast happens—as we will see, it turns out that physical table stages contain

sequences of nested if statements. We write (if a then p else q) for (a; p+ ¬a; q).

Modeling programmable hardware architectures. In addition to providing

network administrators with a language for defining policies, our language of network

policies aptly describes the hardware layout of switches’ packet-processing pipelines.

In this guise, table variables represent TCAM or SRAM tables, and combinators

describe how these hardware tables are connected. The key benefit to devising a

shared language for describing both user-level programs and hardware configurations

is that we can define compilation as a semantics-preserving policy translation problem,

and compiler correctness as a simple theorem about equivalence of input and output

policies defined in a common language. Below, we demonstrate how to model key

elements of the RMT [6] and FlexPipe [42] architectures. Both chips offer differently

architectured fixed pipelines connecting reconfigurable tables.

In RMT (as well as in FlexPipe), multicast is treated specially: the act of copying

and buffering multiple packets during a multicast while processing packets as quickly

as they come in (“at line rate”) is the most difficult element of chip design. The RMT

multicast stage consists of a set of queues, one per output port. Earlier tables in the

pipeline indicate the ports on which a packet should be multicast by setting bits in a

metavariable bitmap we call outi. The multicast stage consists of a sum, where each

summand corresponds to a queue on a particular output port—when the ith out bit

is set, the summand tags the packet with a unique identifier and sets its output port

out to i accordingly.

multicast , (out1 = 1; ftag ← v1; out← 1)

+ (out2 = 2; ftag ← v2; out← 2)

+ . . .

37

In addition to the multicast processor, the RMT architecture provides thirty-two

physical tables, which may be divided into sequences in the ingress and egress

pipelines. The ingress pipeline processes an incoming packet first, before it is

duplicated; any changes made at this point are copied into each duplicate. The

egress pipeline, on the other hand, allows for individual handling—and modification

of—each duplicated packet. The unique identifier (assigned in the multicast stage

with ftag ← vk) allows policy fragments in the egress pipeline to distinguish between

packet copies. Overall, the RMT pipeline consists of the ingress pipeline, followed by

the multicast stage, followed by the egress pipeline.

pipeline , (x1 : τ1); . . . ; (xk : τk);

multicast;

(xk+1 : τk+1); . . . ; (x32 : τ32)

The FlexPipe architecture makes use of concurrency by arranging its pipeline into

a diamond shape. Each point of the diamond is built from two tables in sequence,

with incoming packets first processed by the first pair, then concurrently by the

next two pairs, and finally by the last pair. This built-in concurrency optimizes for

common networking tasks, such as checking packets against an access control list

while simultaneously calculating routing behavior.

pairi , (xi,1 : τi,1); (xi,2 : τi,2)

diamond , pair1; (pair2 || pair3); pair4

The FlexPipe multicast stage occurs after the diamond pipeline and, like the RMT

multicast stage, relies on metadata set in the ingress pipeline to determine multicast.

FlexPipe can make up to five copies (“mirrors”) of the packet that can be indepen-

dently modified, but each copy can be copied again to any output port, so long as no

38

further modifications are required.

multicast , mirror; egress; flood

pipeline , diamond; multicast

We present models of both RMT and FlexPipe (including mirror, egress and flood) in

greater detail in Chapter 3.2.

3.1 Syntax and Semantics

We define the syntax of Concurrent NetCore in Figure 3.2. The language is broken

into two levels: predicates and policies. Predicates, written with the metavariables a

and b, simply filter packets without modifying or copying them. Policies, written with

the metavariables p and q, can (concurrently) modify and duplicate packets. Every

predicate is a policy—a read-only one. Both policies and predicates are interpreted

using a set semantics, much like NetKAT [2]. Policies are interpreted as functions

from sets of packets to sets of packets, while predicates have two interpretations:

as functions from sets of packets to sets of packets, but also as Boolean proposi-

tions selecting a subset of packets. The latter interpretation, although subsumed

by the former, highlights the difference between predicates and policies: predicates

are policies that neither duplicate nor modify packets. A packet, written with the

metavariable pk , is finite partial function from fields to values. We fix a set of fields

F, from which we draw individual fields f . We will occasionally refer to sets of fields

using the metavariables R and W when they denote sets of readable or writable fields,

respectively. We do not have a concrete treatment for values v ∈ Val, though Val

must be finite and support a straightforward notion of equality. One could model

both equality and TCAM-style wildcard matching, but for simplicity’s sake, we stick

with equality only.

39

As explained at the beginning of this chapter, the policies of Concurrent Net-

Core include the predicates as well as primitives for field modification, tables (x : τ),

sequential composition (;), parallel composition (+), and concurrency (||). One differ-

ence from our informal presentation earlier is that concurrent composition p Wp||Wq q

formally requires a pair of write sets Wp and Wq where Wp denotes the set of fields

that p may write and Wq denotes the set of fields that q may write. Our operational

semantics in Section 3.1 will in fact get stuck if p and q have a race condition, e.g.,

have read/write dependencies. One NetKAT combinator that Concurrent NetCore

does not include is Kleene star: in this work, we focus on switch-local policies meant

for a single switch, rather than global policies describing the behavior of an entire

network.

Table variables (x : τ) are holes in a policy to be filled in by the controller with an

initial policy, which the controller updates as the switch processes packets. The type

τ = (R,W) constrains the fields that the table may read from (R) and write to (W).

For example, the rules that populate the table (x : ({src, typ} , {dst})) can only ever

read from the src and typ fields and can only ever write to the dst fields. In practice,

this means that the controller can substitute in for x any policy matching its type

(or with a more restrictive type).

A note on packet field dependences. Packet formats often have complex

dependencies, e.g., if the Ethertype field is 0x800, then the Ethernet header is followed

by an IP protocol header. Switches handle attempts to match or modify a missing

field at run time, although the specific behavior varies by target architecture. In the

RMT chip, for instance, there is a valid bit indicating the presence (or absence) of

each possible field. In OpenFlow 1.0 architectures, matching against a missing field

always succeeds. In both cases, writing to a missing field is treated as a non-operation.

Hence, we assume that each packet arriving at each switch contains fields f1, . . . , fk,

40

Fields f ∈ F,W,R ::= f1 | · · · | fk
Packets pk ∈ PK ::= F ⇀ Val

Variables x, y ∈ Var

Types τ ∈ P(R)× P(W)

Predicates a, b ::= id Identity (True)
| drop Drop (False)
| f = v Match
| ¬a Negation
| a+ b Disjunction
| a; b Conjunction

Policies p, q ::= a Filter
| f ← v Modification
| (x : τ) Table variable
| p+ q Parallel composition
| p; q Sequential composition
| p Wp||Wq q Concurrent composition

States σ ::= 〈p, δ〉
Packet trees δ ::= 〈PK,W〉 Leaves

| 〈par δ1 δ2〉 Parallel processing
| 〈notPK δ〉 Pending negation
| 〈seq PK〉δ Sequential processing
| 〈conW δ1 δ2〉 Concurrent processing

Figure 3.2: Syntax of Concurrent NetCore.

although in practice the value associated with each field (which we treat abstractly)

may be a distinguished “not present” value.

Small-step operational semantics. We give a small-step semantics for closed

policies, i.e., policies where table variables have been instantiated with concrete poli-

cies. By convention, we fix a set of fields M ⊆ F as metadata fields; we assume

that in all packets, these fields are initially set to 0. This definition is particularly

convenient because it obviates the need for any explicit treatment of metadata in our

policy language. In a complete compiler, a more careful account is necessary—there

may only be a finite capacity on a target chip for metadata and virtual or computed

fields. We can approximate these restrictions by fixing the size of M.

41

Just like the switches we are modeling, our policies actually work on packets one

at a time: switches take an input packet and produce a (possibly empty) set of

(potentially modified) output packets. As a technical convenience, our operational

semantics generalizes this, modeling policies as taking a set of packets to a set of

packets. Making this theoretically expedient choice—as we will show in Lemma 3—

doesn’t compromise our model’s adequacy.

While other variants of NetCore/NetKAT use a denotational semantics, we use a

completely new small-step, operational semantics in order to capture the interleavings

of concurrent reads and writes of various fields of a packet. The interaction between

(nested) concurrent processing of shared fields and packet-copying parallelism is quite

intricate and hence deserves a faithful, fine-grained operational model. In Section 3.3,

we define a type system that guarantees the strong normalization of all concurrent

executions (Lemma 1 for normalization and Lemma 2 for confluence), and show that

despite the concurrency, we can in fact use a NetKAT-esque set-theoretic denotational

semantics to reason about policies at a higher level of abstraction if we so choose

(Lemma 3 for the non-concurrent parts, Lemmas 4 and 5 for concurrency).

Using PK to range over sets of packets, we define the states σ for the small-step

operational semantics σ → σ′ in Figure 3.2. These states σ = 〈p, δ〉 are pairs of a

policy p and a packet tree δ. Packet trees represent the state of packet processing,

keeping track of how the fields of each packet are split for concurrent processing and

how packets are copied for union processing. Packet trees also store extra information

needed for later steps, which is necessary in the case of negation.

The leaves of packet trees are of the form 〈PK,W〉, where PK is a set of packets

and W is a set of fields indicating the current write permission. The write permission

indicates which fields may be written; other fields present in the packets pk ∈ PK

may be read but not written. Packet processing is done when we reach a terminal

state, 〈id, 〈PK,W〉〉.

42

There are three kinds of packet tree branches. The packet tree branch 〈par δ1 δ2〉

represents a parallel composition p+ q where p is operating on δ1 and q is operating

on δ2. The packet tree branch 〈notPK δ〉 represents a negation ¬a where a is running

on δ—when a terminates with some set of packets PK′, we will compute PK\PK′, i.e.,

those packets not satisfying a. The packet tree branch 〈seq δ〉 a sequential composition

p; q, where processing begins with p and, once p has reduced to id, continues with q.

The packet tree branch 〈conW δ1 δ2〉 represents a concurrent composition p Wp||Wq q

where p works on δ1 with write permission Wp and q works on δ2 with write permission

Wq. We also store W, the write permission before concurrent processing, so we can

restore it when p and q are done processing. We show how packet trees are used in

more detail below.

We write σ → σ′ to mean that the state σ performs a step of packet processing and

transitions to the state σ′. Packet processing modifies the packets in a state and/or

reduces the term. The step relation relies on several auxiliary operators on packets

and packet sets. We read pk [f := v] as, “update packet pk ’s f field with the value v;”

and pk \F as, “packet pk without the fields in F;” and PK\F as, “those packets in PK

without the fields in F,” which lifts pk \ F to sets of packets. Finally, we pronounce

× as “cross product.” Notice that PK \ F only produces the empty set when PK is

itself empty—if every packet pk ∈ PK has only fields in F, then PK \ F = {⊥}, the

set containing the empty packet. Such a packet set is not entirely trivial, as there

remains one policy decision to be made about such a set of packets: drop (using drop)

or forward (using id)? On the other hand, ∅ × PK = PK× ∅ = ∅.

With these definitions in hand, we define the step relation in Figure 3.3, ac-

companied by auxiliary functions defined in Figure 3.4. The following invariants of

evaluation and well-typed policies may be of use while reading through Figure 3.3.

43

Reduction relation
σ1 → σ2

〈drop, 〈PK,W〉〉 → 〈id, 〈∅,W〉〉
Drop

〈f = v, 〈PK,W〉〉 → 〈id, 〈{pk ∈ PK | pk(f) = v},W〉〉
Match

f ∈W

〈f ← v, 〈PK,W〉〉 → 〈id, 〈{pk [f := v] | pk ∈ PK},W〉〉
Modify

〈p; q, 〈PK,W〉〉 → 〈p; q, 〈seq 〈PK,W〉〉〉
SeqEnter

〈p, δ〉 → 〈p′, δ′〉
〈p; q, 〈seq δ〉〉 → 〈p′; q, 〈seq δ′〉〉

SeqL

〈id; q, 〈seq 〈PK,W〉〉〉 → 〈q, 〈PK,W〉〉
SeqR

〈p+ q, 〈PK,W〉〉 → 〈p+ q, 〈par 〈PK,W〉 〈PK,W〉〉〉
ParEnter

〈p, δp〉 → 〈p′, δ′p〉
〈p+ q, 〈par δp δq〉〉 → 〈p′ + q, 〈par δ′p δq〉〉

ParL

〈q, δq〉 → 〈q′, δ′q〉
〈p+ q, 〈par δp δq〉〉 → 〈p+ q′, 〈par δp δ′q〉〉

ParR

〈id + id, 〈par 〈PKp,W〉 〈PKq,W〉〉〉 → 〈id, 〈PKp ∪ PKq,W〉〉
ParExit

〈¬a, 〈PK,W〉〉 → 〈a, 〈notPK 〈PK,W〉〉〉
NotEnter

〈a, δ〉 → 〈a′, δ′〉
〈a, 〈notPK δ〉〉 → 〈a′, 〈notPK δ′〉〉

NotInner

〈id, 〈notPK 〈PKa,W〉〉〉 → 〈id, 〈PK \ PKa,W〉〉
NotExit

Wp ∩Wq = ∅ Wp ∪Wq ⊆W

〈p Wp||Wq q, 〈PK,W〉〉 → 〈p Wp||Wq q, 〈conW 〈PK \Wq,Wp〉 〈PK \Wp,Wq〉〉〉
ConEnter

〈p, δp〉 → 〈p′, δ′p〉
〈p Wp||Wq q, 〈conW δp δq〉〉 → 〈p′ Wp||Wq q, 〈conW δ′p δq〉〉

ConL

〈q, δq〉 → 〈q′, δ′q〉
〈p Wp||Wq q, 〈conW δp δq〉〉 → 〈p Wp||Wq q

′, 〈conW δp δ
′
q〉〉

ConR

〈id Wp||Wq id, 〈conW 〈PKp,Wp〉 〈PKq,Wq〉〉〉 → 〈id, 〈PKp × PKq,W〉〉
ConExit

Figure 3.3: Semantics of Concurrent NetCore.
44

Packet operations

pk [f := v] = λf ′ .

{
v f = f ′

pk(f ′) otherwise

pk \ F = λf .

{
⊥ f ∈ F

pk(f) otherwise

PK \ F = {pk \ F | pk ∈ PK}

pk 1 × pk 2 = λf .


pk 1(f) when f 6∈ Dom (pk 2)

pk 2(f) when f 6∈ Dom (pk 1)

pk 1(f) when pk 1(f) = pk 2(f)

PK1 × PK2 = {pk 1 × pk 2| pk 1 ∈ PK1, pk 2 ∈ PK2}

Figure 3.4: Auxiliary functions accompanying the semantics in Figure 3.3.

• Policy evaluation begins with a leaf 〈PK,W〉 and ends with a leaf 〈PK′,W〉

with the same write permissions W.This invariant follows from normalization

(Lemma 1).

• Policies may modify the values of existing fields within packets, but they cannot

introduce new packets nor new fields—policies given the empty set of packets

produce the empty set of packets.

The first few rules are straightforward. The (Drop) rule drops all its input packets,

yielding ∅. In (Match), a match 〈f = v, 〈PK,W〉〉 filters PK, producing those packets

which have f set to v. In (Modify), a modification 〈f ← v, 〈PK,W〉〉 updates packets

with the new value v. Both (Match) and (Modify) can get stuck: the former if f is

not defined for some packet, and the latter if the necessary write permission (f ∈ W)

is missing.

45

Sequential processing for p; q is simpler: we mark that sequential processing has

begin (SeqEnter), running p to completion (SeqL), and then running q on the re-

sulting packets (SeqR). Intuitively, this is the correct behavior with regard to drop: if

p drops all packets, then q will run on no packets, and will therefore produce no pack-

ets. One could imagine a shortcut rule to optimize execution that skips q altogether

when p produces no packets, but we omit it for clarity.

The parallel composition p + q is processed on 〈PK,W〉 in stages, like all

of the remaining rules. First, (ParEnter) introduces new packet tree branch,

〈par 〈PK,W〉 〈PK,W〉〉, duplicating the original packets: one copy for p and one for q.

ParL and ParR step p and q in parallel, each modifying its local packet tree. When

both p and q reach a terminal state, ParExit takes the union of their results. Note

that ParExit produces the identity policy, id, in addition to combining the results of

executing p and q, and we restore the initial write permissions W. As with NetKAT,

p+ q has a set semantics, rather than bag semantics. If p and q produce an identical

packet pk , only one copy of pk will appear in the result.

Negation ¬a, like parallel composition, uses a special packet tree branch (not)—in

this case, to keep a copy of the original packets. Running ¬a on PK, we first save

a copy of PK in the packet tree 〈notPK 〈PK,W〉〉 (NotEnter), preserving the write

permissions. We then run a on the copied packets (NotInner). When a finishes with

some PKa, we look back at our original packets and return the saved packets not in

PKa (NotExit).

Concurrent composition is the most complicated of all our policies. To run the

concurrent composition p Wp||Wq q on packets PK with write permissions W, we first

construct an appropriate packet tree (ConEnter). We split the packets based on

two sets of fields: those written by p, Wp, and those written by q, Wq. We also store

the original write permissions W—a technicality necessary for the metatheory, since

in well typed programs W = Wp ∪Wq (see (Con) in the typing rules in Figure 3.10,

46

Section 3.3). The sub-policies p and q run on restricted views of PK, where each side

can (a) read and write its own fields, and (b) read fields not written by the other. To

achieve (a), we split W between the two. To achieve (b), we remove certain fields from

each side: the sub-policy p will process PK \Wq under its own write permission Wp

(ConL), while the sub-policy q will process PK \Wp under its own write permission

Wq (ConR). Note that it is possible to write bad sets of fields for Wp and Wq in

three ways: by overlapping, with Wp and Wq sharing fields (stuck in (ConEnter));

by dishonesty, where p tries to write to a field not in Wp (stuck later in (Modify));

and by mistake, with p reading from a field in Wq (stuck later in (Match)). While

evaluation derivations of such erroneous programs will get stuck, our type system

rules out such programs (Lemma 1). When both sides have terminated, we have sets

of packets PKP and PKq, the result of p and q processing fragments of packets and

concurrently writing to separate fields. We must then reconstruct a set of complete

packets from these fragments. In (ConExit), the cross product operator × merges

the writes from PKp and PKq. We take every possible pair of packets pk p and pk q

from PKp and PKq and construct a packet with fields derived from those two packets.

(It is this behavior that leads us to call it the ‘cross product’.) In the merged packet

pk , there are three ways to include a field:

1. We set pk .f to be pk p.f when f 6∈ Dom
(
pk q
)
. That is, f is in Wp and may have

been written by p.

2. We set pk .f to be pk q.f when f 6∈ Dom
(
pk p
)
. Here, f ∈ Wq, and q may have

written to it.

3. We set pk .f to pk p.f , which is equal to pk q.f . For a f to be found in both

packets, it must be that f 6∈ Wp ∪Wq—that is, f was not written at all.

This accounts for each field in the new packet pk , but do we have the right number of

packets? If p ran a parallel composition, it may have duplicated packets; if q ran drop,

47

it may have no packets at all. One guiding intuition is that well typed concurrent

compositions p || q should be equivalent to p; q and q; p. (In fact, all interleavings of

well typed concurrent compositions should be equivalent, but sequential composition

already gives us a semantics for the ‘one side first’ strategy.) The metatheory in

Section 3.3 is the ultimate argument, proving normalization and soundness (Lemma 1)

and the properties of concurrent composition (Lemmas 4 and 5), but we can give some

intuition by example:

• Suppose that PK = {pk} and that p = f1 ← v1 and q = f2 ← v2 up-

date separate fields. In this case PKp = {(pk \ {f2})[f1 := v1]} and PKq =

{(pk \ {f1})[f2 := v2]}. Taking PKp×PKq yields a set containing a single packet

pk ′, where pk ′(f1) = v1 and pk ′(f2) = v2, but pk ′(f) = pk(f) for all other—just

as if we ran p; q or q; p.

• Suppose that p = id and q = drop. When we take PKp × PKq, there are no

packets at all in PKq, and so there is no output. This is equivalent to running

id; drop or drop; id.

• Suppose that p = f1 ← v1 + f1 ← v′1 and q = f2 ← v2. Running {f1} || {f2} pq

on PK will yield

PKp = {pk [f1 := v1] | pk ∈ PK \ {f2}} ∪

{pk [f1 := v′1] | pk ∈ PK \ {f2}}

PKq = {pk [f2 := v2] | pk ∈ PK \ {f1}}

PKp × PKq = {pk [f2 := v2][f1 := v1] | pk ∈ PK} ∪

{pk [f2 := v2][f1 := v′1] | pk ∈ PK}

Which is the same as running p; q or q; p.

48

We should note that p Wp||Wq q is not the same as p; q when Wp and Wq are incorrect,

e.g., when p tries to write a field f 6∈ Wp, or when q tries to read a field f ∈ Wp.

Sequential composition may succeed where concurrent composition gets stuck!

Limitations of concurrent composition. The annotations on the concurrency

operator denote a strong form of concurrency: they bound the write operations that

may occur, not those that will necessarily take place for a given packet. In other

words, the operational semantics will get stuck processing some policies that do not,

in fact, exhibit race conditions. Take, for example, the following contrived example.

(if a then f ← v1 else id) || (if a then id else f ← v2)

Supposing that a does not match f , then no packet will ever be subject to both

modifications: the if statements on each side of the concurrent composition branch

on the same predicate, and so will apply the same branch, hence never both modifying

the same field. But what annotation do we ascribe the concurrency operator? Both

sides potentially modify f , and so the annotation must be {f}||{f} , which causes

the operational semantics to get stuck (at ConEnter), and which the type system—

presented in the next section—will reject.

The problem arises because the semantics demands the writable fields be split

as soon as the concurrency operator is reached. So far, this seems a reasonable

limitation, in that we have not yet encountered pipeline architectures that support

two concurrent tables potentially writing to the same field. But these architectures

are new, and the documentation specifying the lowest level of their behavior is not

necessarily complete. In the future, it would be worth revisiting this point, both to

again determine whether the behavior of these switches matches the model, and to

extend the semantics to capture more fine-grained concurrent behavior.

49

Modeling the SDN controller. The operational semantics is defined on closed

policies—that is, policies without table variables. At configuration time, the controller

installs a (possibly open) policy on each switch, which tells the switch how to arrange

its packet processing pipeline. Next, at population time, the controller will send

messages to the switch instructing it to replace each abstract table variable with a

concrete (closed) policy, after which packet processing proceeds as described by the

operational semantics from Figure 3.3.

Definition 1. Population-time updates and closing functions.

Table bindings b ∈ Var ⇀ Policy

Closing functions Tb ∈ Policy→ Policy

We model population-time updates as partial functions b that map table variables

to closed policies—i.e. a closing substitution—which we call table bindings. The

function Tb (p) structurally recurses through a policy p, replacing each table variable

x with b(x). That is, the policy p is a configuration-time specification, and Tb (p)

is an instance of that specification populated according to the update function b.

Population-time updates and closing functions will play a large role in Chapter 4,

when we present a compilation algorithm for transforming a policy (and subsequent

updates) to fit on a fixed target architecture.

3.2 Pipeline Models

In addition to serving programmers at a user level, our language of network policies

can model the hardware layout of a switch’s packet-processing pipeline. When we

interpret Concurrent NetCore policies as pipelines, table variables represent TCAM

or SRAM tables, and combinators describe how tables are connected.

50

Figure 3.5 presents a detailed model of the physical tables found in both the RMT

and FlexPipe pipelines, while Figures 3.7 and 3.9 define the pipeline architectures

themselves. Both architectures share some physical characteristics, including the

physical layout of hardware tables. These physical tables are built from SRAM or

TCAM memory and hold rules that match on packet header fields and, depending on

the results of the match, modify the packet header. Each table has a fixed amount

of memory, but it can be reconfigured, in the same way the height and width of a

rectangle can vary as the area remains constant. The width of a table is determined

by the number of bits it matches on from the packet header, and the height determines

the number of rules it can hold. Hence, knowing in advance that the controller will

only ever install rules that match on the src is valuable information, as it allows

more rules to be installed. Although both chips support complex operations—such

as adding and removing fields, arithmetic, checksums, and field encryption—we only

model rewriting the value of header fields.

Physical tables are so-called match/action tables: the table comprises an ordered

list of rules matching some fields on the header of a packet. The table selects a

matching rule and executes its corresponding action. We model physical tables in the

pipeline as table variables, so we must be careful that our compiler only substitutes

in policies that look like rules in a match/action table. In an implementation of a

compiler from Concurrent NetCore to a switch, we would have to actually translate

the rule-like policies to the switch-specific rule population instructions. In our model

and the proofs of correctness, we treat policies of the form

matches; crossbar; actions

as rules (the translation to syntactically correct OpenFlow rules is straightforward

enough at this point). The matches policy matches some fields and selects actions to

51

perform; the crossbar policy collects the actions selected, and then the actions policy

runs them. (We elaborate on these phases below.) We believe that this is an adequate

model, since it would not be hard to translate CNC policies in this form to rules for

a particular switch. Our model requires that run-time updates to physical tables be

of the form above; i.e., the binding b(x : τ) (Definition 1) has a rule-like tripartite

structure.

Physical tables. Each variable mapped to a physical table by the binding b(x : τ)

comprises three stages. The match stage is first. A single match (matchi) sets the

metadata field acti based on a subset of fields drawn from the packet header; here we

write Πk fk = vk to stand for some sequence of matches f1 = v1; . . . ; fn = vn for some

length n. These fields implicitly determine the width of the match. The metadata

field acti holds an action identifier Af v which encodes an action—update field f with

value v—as a unique bit sequence. This is a stand-in for the slightly more structured

action languages of the RMT and FlexPipe chips. The f index of action identifiers

ranges over fields, grouping updates to the same field. For example, Aout1 corresponds

to updating the output port field out to 1. By construction, action selection is written

to a metadata field acti that is unique to that match, allowing for the match stage to

execute multiple matches concurrently.

Once the acti fields are set, the physical table has a crossbar that combines the

metadata fields and selects the actions to execute—which we model with metadata

fields dof v, one for each Af v; here we write Σk fk = vk to stand for some disjunction

of matches f1 = v1 + . . . + fn = vn for some number of summands n. Each field dof v

is consumed by an action stage, which runs the corresponding actions on the packet.

Each actionf stage tests for actions denoting updates to field f , which allows actions

to execute concurrently. Continuing the example, if Aout1 was assigned to any acti

field in a match stage, then the crossbar stage will set dooutv to 1, and the action stage

will have a clause (if dooutv = 1 then out← v else . . .).

52

Physical tables

matchi ::= id
| if Πk fk = vk then outi ← Af v else matchi

matches = match1 ||match2 || . . .

crossbar = drop
| if Σk actk = Afkvk then dof v ← 1 else crossbar

actionj = id
| if dofjv1 = 1 then fj ← v1 else actionj

actions = action1 || action2 || . . .

physical = x : τ

Tb (physical) = matches; crossbar; actions

Figure 3.5: A common model for physical tables.

As a larger example, suppose we would like to compile the routing and firewall

policies (r ||w) from Figure 3.1 as a single physical table.

r = in = 1; out← 2 + in = 2; out← 1

w = in = 1; (typ = ssh+ typ = http) + ¬(in = 1)

First, let’s fix four concrete action values—we’ll say that a value of 11 means “modify

the out field to 1” (out← 1); a value of 12 means “modify the out field to 2” (out← 2);

a value of 31 means “do nothing” (id); and a value of 41 means “drop the packet”

53

(drop). We begin by defining two concurrent match stages, one each for r and w.

matchr = if in = 1 then actr ← 12

else if in = 2 then actr ← 11

else actr ← 41

matchw = if in = 1; typ = ssh then actw ← 31

else if in = 1; typ = http then actw ← 31

else if in = 1 then actw ← 41

else actw ← 31

matches = matchr ||matchw

The matchr construct mirrors the structure of r, but rather than directly modifying

the out field directly, it assigns an action identifier to the actr metadata field. En-

coding w is slightly more complex, thanks to the presence of disjunction (+) and

negation. But it follows a similar pattern: In addition to converting w to a sequence

of nested if statements, matchw assigns an action identifier to the actw metadata field

in place of taking an action directly. The matches stage is made up of matchr and

matchw composed concurrently.

The crossbar stage collects the action values assigned in the matches stage in order

to communicate them to the actions stage, where modifications to the packet header

fields occur.

crossbar = if actr = 11 + actw = 11 then do11 ← 1

else if actr = 12 + actw = 12 then do12 ← 1

else if actr = 31 + actw = 31 then do31 ← 1

else if actr = 41 + actw = 41 then do41 ← 1

else drop

54

The actions stage consumes the output of the crossbar in order to effect modi-

fications to the header fields. Actions on the same field are grouped; in this case,

modifications to the out field are handled by actionout. This allows each action group

to be executed concurrently, because they operate on different fields by construction.

actionout = if do11 = 1 then out← 1

else if do12 = 1 then out← 2

else id

actionid = if do31 = 1 then id

else id

actiondrop = if do41 = 1 then drop

else id

actions = actionout || actionid || actiondrop

Separating tables into three stages may seem excessive, but suppose r also modified

the typ field. In this case, r ||w is no longer well typed (because r writes to typ while

w reads from it), but we may still extract concurrency from w; r: By splitting reading

and writing into separate phases, the match stage for applying the access control

policy (matchw) can run concurrently with the match determining the output port

(matchr) with little change from the example above. Concurrent processing like this

is a key feature of both the RMT and FlexPipe architectures.

RMT. The RMT chip provides a thirty-two table pipeline divided into ingress and

egress stages, which are separated by a multicast stage. Figure 3.6 depicts a visual

representation of the pipeline, while Figure 3.7 defines the formal model. As a packet

arrives, tables in the ingress pipeline act upon it before it reaches the multicast stage.

To indicate that the packet should be duplicated, ingress tables mark a set of metadata

fields corresponding to output ports on the switch. The multicast stage maintains a

set of queues, one per output port. The chip enqueues a copy of the packet (really

55

physical 1 physical k physical k+1 physical 32

m
u
l
t
i
c
a
s
t

Figure 3.6: A depiction of the RMT pipeline.

RMT model

multicast = (out1 = 1; ftag ← v1; out← 1)
+ (out2 = 2; ftag ← v2; out← 2)
+ . . .

pipeline = physical1; . . . ; physicalk; multicast;
physicalk+1; . . . ; physical32

where k ≤ 16

Figure 3.7: A linguistic model of the RMT pipeline.

a copy of the packet’s header and a pointer to the packet’s body) into those queues

selected by the metadata, optionally marking each copy with a distinct tag. Finally,

tables in the egress pipeline process each copy of the packet.

We model the multicast stage as the parallel composition of sequences of tests on

header and metadata fields followed by the assignment of a unique value tag and an

output port, where each summand corresponds to a queue in the RMT architecture.

We model the ingress and egress pipelines as sequences of tables, where each of the

thirty-two tables may be assigned to one pipeline or the other, but not both. The

RMT architecture makes it possible to divide a single physical table into pieces and

assign each piece to a different pipeline. We leave modeling this as future work.

FlexPipe. While physical tables have built-in concurrency within match and action

stages, the FlexPipe architecture also makes use of concurrency between physical

56

physical
12

physical
11

physical
42

physical
41

physical
22

physical
21

physical
32

physical
31

e
g
r
e
s
s

m
i
r
r
o
r

f
l
o
o
d

Figure 3.8: A depiction of the FlexPipe pipeline.

FlexPipe model

mirror = m = 0 +
∑

imi = 1;m← i

egress = if f11 = v11; . . . ; f1n = v1n
then f ′11 ← v′11; . . . ; f

′
1n ← v′1n

else if f21 = v21; . . . ; f2m = v2m
then f ′21 ← v′21; . . . ; f

′
2n ← v′2n

else . . .

flood =
∑

i outi = 1; out← i

pair = physical1; physical2

diamond = pair1; (pair2 || pair3); pair4

pipeline = diamond; mirror; egress; flood

Figure 3.9: A linguistic model of the Intel FlexPipe pipeline.

tables. Figure 3.8 depicts a visual representation of the pipeline, while Figure 3.9

defines the formal model.

The ingress pipeline is arranged in a diamond shape. Each point of the diamond

is built from two tables in sequence, with incoming packets first processed by the first

pair, then concurrently by the next two pairs, and finally by the last pair. This built-

in concurrency is optimized for common networking tasks, such as checking packets

against an access control list while simultaneously calculating routing behavior—as

in our firewall example of Figure 3.1.

The FlexPipe architecture breaks multicast into two stages separated by a single

egress stage. The mirror stage makes up to four additional copies of the packet.

Each copy sets a unique identifier to a metadata field m and writes to a bitmap out

corresponding to the ports on which this copy will eventually be emitted—this allows

57

for up to five potentially modified packets to be emitted from each port for each input

packet. The egress stage matches on the metadata field m and various other fields

to determine which modifications should be applied to the packet, and then applies

those corresponding updates. Finally, the flood stage emits a copy of each mirrored

packet on the ports set in its out bitmap.

3.3 Metatheory

The operational semantics of Section 3.1/Figure 3.3 defines the behavior of policies

on packets. A number of things can cause the operational semantics to get stuck,

which is how we model errors:

1. Unsubstituted variables—they have no corresponding rule.

2. Reads of non-existent fields—(Match) can’t apply if there are packets pk ∈ PK

such that f 6∈ Dom (pk), as might happen if ConEnter were to split packets

incorrectly.

3. Writes to fields without write permission—(Modify) only allows writes to a

field f if f ∈ W.

4. Race conditions—concurrency splits the packet tree based on the write per-

missions of its subpolicies, and incorrect annotations can lead to stuckness via

being unable to apply (ConEnter), which requires that Wp ∩Wq = ∅, or via

getting stuck on (2) or (3) later in the evaluation due to the reduced fields and

permissions each concurrent sub-policy runs with.

We define a type system in Figure 3.10, with the aim that well typed programs won’t

get stuck—a property we show in our proof of normalization, Lemma 1. First, we

define entirely standard typing contexts, Γ. We will only run policies typed in the

empty environment, i.e., with all of their tables filled in. Before offering typing rules

58

Γ ::= · | Γ, (x : τ)

(R1,W1) ∪ (R2,W2) = ((R1 \W2) ∪ (R2 \W1),W1 ∪W2)

` τ ` PK : τ

R,W ⊆ F R ∩W = ∅
` (R,W)

∀pk ∈ PK. R ∪W ⊆ Dom (pk)

` PK : (R,W)

Γ ` p : τ

` τ
Γ ` id : τ

Id
` τ

Γ ` drop : τ
Drop

(x : τ) ∈ Γ ` τ
Γ ` x : τ

Var

` (R,W) f ∈ R ∪W

Γ ` f = v : (R,W)
Match

` (R,W) f ∈ W

Γ ` f ← v : (R,W)
Modify

Γ ` a : (R, ∅)
Γ ` ¬a : (R,W)

Not
Γ ` p : τ1 Γ ` q : τ2

Γ ` p+ q : (τ1 ∪ τ2)
Par

Γ ` p : τ1 Γ ` q : τ2

Γ ` p; q : (τ1 ∪ τ2)
Seq

Γ ` p : (Rp,Wp)
Γ ` q : (Rq,Wq) Wp ∩Wq = ∅ Wp ∩ Rq = ∅ Rp ∩Wq = ∅

Γ ` p Wp||Wq q : ((Rp,Wp) ∪ (Rq,Wq))
Con

Figure 3.10: Typing rules for Concurrent NetCore.

for policies, we define well formedness of types and typing of packet sets. A type

τ = (R,W) is well formed if R and W are subsets of a globally fixed set of fields F and

if R∩W is empty. A set of packets PK conforms to a type τ = (R,W) if every packet

pk ∈ PK has at least those fields in R ∪W.

The policies id and drop can both be typed at any well formed type, by (Id) and

(Drop), respectively. Table variables (x : τ) are typed at their annotations, τ . The

matching policy f = v is well typed at τ when f is readable or writable (Match).

Similarly, f ← v is well typed at τ when f is writable in τ (Modify).

Negations ¬a are well typed at τ = (R,W) by (Not) when a is well typed at the

read-only version of τ , i.e., (R, ∅). We restrict the type to being read-only to reflect

59

the fact that (a) only predicates can be negated, and (b) predicates never modify

fields.

If p is well typed at τ1 and q is well typed at τ2, then their parallel composition

p + q is well typed at τ1 ∪ τ2. Union on types is defined in Figure 3.3 as taking the

highest privileges possible: the writable fields of τ1 ∪ τ2 are those that were writable

in either τ1 or τ2; the readable fields of the union are those fields that were readable

in one or both types but weren’t writable in either type. We give their sequential

composition the same type.

Concurrent composition has the most complicated type—we must add (conserva-

tive) conditions to prevent races. Suppose Γ ` p : (Rp,Wp) and Γ ` q : (Rq,Wq). We

require that:

• There are no write-write dependencies between p and q (Wp ∩Wq = ∅; a re-

quirement of (ConEnter).

• There are no read-write or write-read dependencies between p and q (Wp∩Rq =

∅ and Rp ∩Wq = ∅). This guarantees that (Match) won’t get stuck trying to

read a field that isn’t present.

If these conditions hold, then we say the concurrent composition is well typed: Γ `

p Wp||Wq q : (Rp,Wp) ∪ (Rq,Wq). Note that this means that the W stored in the

con packet tree will be Wp ∪ Wq, and well typed programs meet the Wp ∪ Wq ⊆

W requirement of (ConEnter) exactly. These conditions are conservative—some

concurrent compositions with overlapping reads and writes are race-free. We use

this condition for a simple reason: switches make similar disjointness restrictions on

concurrent tables.

Two metatheorems yield a strong result about our calculus: strong normalization.

We first prove well typed policies are normalizing when run on well typed leaves

60

〈PK,W〉—they reduce to the terminal state 〈id, 〈PK′,W〉〉 with some other, well typed

set of packets PK′ and the same write permissions W.

Lemma 1 (Normalization). If

` τ = (R,W) and ` PK : τ and · ` p : τ

then 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 such that

1. ` PK′ : τ , and

2. PK′ \W ⊆ PK \W.

Proof. By induction on the policy p, leaving τ general. The only difficulty is showing

that (ConExit) can always successfully merge the results of well typed concurrency,

which can be seen by a careful analysis of the cross product, using part (2) of the

IH to show that fields not in the write permission W are “read-only”. This lemma

appears as Lemma 18 in Appendix B, which presents the proof in more detail.

Next we show that our calculus is confluent—even for ill typed terms. This result

may be surprising at first, but observe that concurrency is the only potential hitch

for confluence. A concurrent composition with an annotation that conflicts with the

reads and writes of its sub-policies will get stuck before ever running (ConExit). Even

ill typed programs will be confluent—they just might not be confluent at terminal

states. We can imagine an alternative semantics, where concurrency really worked

on shared state—in that formulation, only well typed programs would be confluent.

Lemma 2 (Confluence). If σ →∗ σ1 and σ →∗ σ2 then there exists σ′ such that

σ1 →∗ σ′ and σ2 →∗ σ′.

Proof. By induction on the derivation of σ →∗ σ1, proving the (stronger) single-step

diamond property first. This lemma appears as Lemma 20 in Appendix B, which

presents the proof in full.

61

Normalization and confluence yield strong normalization. Even though our small-

step operational semantics is nondeterministic, well typed policies terminate deter-

ministically. We can in fact do one better: our small-step semantics (without con-

currency) coincides exactly with the denotational semantics of NetKAT [2], though

we (a) do away with histories, and (b) make the quantification in the definition of

sequencing explicit—as the union of q applied to each packet produced by p—rather

than using Kleisli composition. Since our policies are ‘switch-local’, we omit Kleene

star.

Lemma 3 (Adequacy). If ` τ = (R,W) and · ` p : τ = (R,W) with no concurrency,

then for all packets ` PK : τ , 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 and PK′ =
⋃

pk∈PK JpK pk,

where:

JpK ∈ PK→ P(PK)

JidK pk , {pk}

JdropK pk , ∅

Jf = vK pk ,


{pk} pk(f) = v

∅ otherwise

Jf ← vK pk , {pk [f := v]}

J¬aK pk , {pk} \ (JaK pk)

Jp+ qK pk , JpK pk ∪ JqK pk

Jp; qK pk ,
⋃

pk ′∈JpKpk JqK pk ′

Proof. By induction on · ` p : τ , noting that PK′ always exists by the strong normal-

ization result (Lemmas 1 and 2). This lemma appears as Lemma 22 in Appendix B,

which presents the proof in full.

62

The set-based reasoning principles offered by the denotational semantics are quite

powerful. We can in fact characterize the behavior of well typed concurrent composi-

tions as:
q
p Wp||Wq q

y
, Jp; qK (Lemma 5)

= Jq; pK (Lemma 4)

Lemma 4 (Concurrency commutes). If ` PK : τ then

` p Wp||Wq q : τ and 〈p Wp||Wq q,PK〉 →∗ 〈id,PK′〉

⇐⇒ ` q Wq||Wp p : τ and 〈q Wq||Wp p,PK〉 →∗ 〈id,PK′〉.

Proof. We reorder the congruence steps so that whenever we use ConL in one deriva-

tion, we use ConR in the other, and vice versa. Confluence (Lemma 2) proves the

end results equal.

Lemma 5 (Concurrency serializes). If ` p Wp||Wq q : (R,W) and ` PK : τ then

〈p Wp||Wq q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 iff 〈p; q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉.

Proof. Rewriting derivations by confluence (Lemma 2) to run p using (ConL/SeqL)

and then q (nesting in ConR under concurrency). We rely on auxiliary lemmas

relating, for all p, p’s behavior on PK\Wq and on PK (when Rp∩Wq = Wp∩Wq = ∅).

This lemma appears as Lemma 30 in Appendix B, which presents the proof in full.

Together, Lemmas 3, 4, and 5 give us a means of using the NetKAT axioms,

extended with axioms for concurrency, to reason about the transformation of CNC

policies. The next chapter makes use of this technique to prove semantic preservation

of several compilation algorithms.

63

Chapter 4

Compiling from High-level Policies

to Low-level Pipelines

A major challenge for the designers of network programming languages is compiling

their high-level abstractions to the low-level operations that network hardware sup-

ports. A pipeline-aware controller—that is, one that has visibility into and control

over the packet-processing pipelines within the switches with which it connects—is

faced with two compilation tasks. First, if the pipeline is reconfigurable, the con-

troller must configure the pipeline to support every policy it might deploy during

the lifetime of the network, or at least until each switch can be brought offline for

reconfiguration. And second, it must decide how and where to install its rules at pop-

ulation time, when faced with a pipeline that may contain many tables with similar

capabilities. Moreover, there may be many different switches in the network, each

with its own pipeline and options for reconfiguration.

Both challenges cry out for an automated solution: While a network programmer

could certainly write a different program for each type of switch in the network and

reason manually about rule placement therein, the former task benefits immensely

from a compiler, and the latter is better phrased as an optimization task.

64

controller

RMT FlexPipeOpenFlow 1.0

Phase I:
The controller defines
a virtual pipeline.

Phase II:
The controller populates
virtual tables with rules.

compiler/translator

table table table

The translator reapplies
compiler transformations
to install rules from virtual
to physical tables.

The compiler fits the
virtual pipeline to each

physical pipeline.

virtual pipeline

Figure 4.1: An example of the controller interacting with a virtual pipeline.

Virtual pipelines. In this chapter, we explore how the controller can represent

its network resource requirements in the form of a virtual pipeline, and how a com-

pilation framework can choose an optimal physical pipeline configuration for such a

virtual pipeline and reconcile the differences between the virtual and physical pipelines

through a set of compilation passes. Figure 4 illustrates the interaction between a

controller, virtual pipeline, compiler, translator, and different physical pipelines. No-

tably, the virtual pipeline abstraction is naturally represented as a CNC policy: Just

as CNC table variables and combinators can represent a physical pipeline, so too

can they represent a virtual one. And so, the compilation process can be phrased

as a translation of CNC policies, and the proof of compilation correctness—i.e. that

65

compilation is semantics preserving—becomes a proof of policy equivalence amenable

to reasoning with the equational theory we developed in Chapter 3, Section 3.3.

Configuration-time pipeline compilation. Before the network begins transmit-

ting data, the virtual pipeline must be compiled to fit within the physical pipeline.

Compilation consists of several passes, each of which addresses a discrepancy between

the expressivity of the high-level policy and the physical restrictions of the hardware

model. In this section, we target the RMT architecture modeled in Section 3.2.

• Multicast consolidation transforms a policy with arbitrary occurrences of

multicast (+) into a pipeline wherein multicast occurs at just a single stage.

• If statement splitting rewrites if statements with complex policies in the

conditional branches into a sequence of two if statements, each with a complex

policy in only one conditional branch.

• Field extraction moves modifications of a given field to an earlier stage of a

pipeline.

• Table fitting partitions a pipeline into a sequence of tables, possibly combin-

ing multiple policy fragments into a single table, and introducing concurrent

composition where possible.

At the end, the compiler produces a configuration for the physical pipeline as well as a

population-time rule translator that reifies the placement and configuration decisions

each pass makes.

Population-time rule translation. During compilation, some passes may move,

modify, or break apart virtual tables to fit them into the physical pipeline. But at

configuration time, tables are as yet unfilled; they are opaque variables that cannot

themselves be modified. Rather, these operations must be applied to rules that are

installed into the virtual tables at population time, in order to properly translate and

66

fit them into the appropriate physical tables. The compiler produces a rule translator

to perform this function.

Single-table rule translation. The rule translator also performs a second task.

Population-time rule updates may be largely unstructured, but the physical tables in

switching hardware have a very fixed structure, as we saw in Section 3.2. The rule

translator also transforms the rules to fit within the fixed structure of each physical

table, which we call single-table compilation.

Hence, there are two challenges in deploying a CNC policy to a software-defined

network: configuring the pipeline, and compiling population-time policies into the

configured pipeline tables. We begin in Section 4.1 with the simpler exercise of

compiling a NetKAT policy to a single table. Section 4.2 shows how to compile

a virtual pipeline to the RMT pipeline model, and produce a population-time rule

transformer that (a) reifies the compilation decisions in order to place rules populating

virtual tables into the correct physical tables, and (b) applies single-table compilation.

A note on failure. The compilation of a well-typed virtual pipeline will always

succeed, in that it will produce a physical pipeline that resembles the RMT pipeline

and a transformer for handling population-time updates. But the compiled policy may

require more resources than the RMT architecture can provide: either more tables

(i.e. more physical memory for installing population-time rules) or more metadata

fields. Similarly, population-time translation can also fail if the transformed update

requires more resources than the physical architecture has available.

Each compilation stage takes an estimate of the resources required at population

time; these estimates are used to reserve resources at compile time and potentially

reject overly demanding programs. In practice, network programmers make such

estimates by reasoning about the control logic that populates each table. For example,

in a learning switch, the controller might install a new rule whenever a new host

sends traffic through the switch. Hence, the size of the table can be bounded by the

67

maximum number of hosts allowed to join the network. This is as good as the current

practice in many networks, where fixed table sizes implicitly bound network behavior.

In the future, we hope to extend these compilation algorithms to accept weighted—

rather than fixed—estimates, and to produce pipeline configurations that maximize

the available rule space while respecting the relative weights of virtual tables.

4.1 Single-table Compilation

Before exploring end-to-end pipeline transformations, we examine the process by

which an arbitrary switch-local NetKAT policy can be transformed to fit into a sin-

gle OpenFlow 1.0 table. Other network programming languages have compilation

algorithms with proofs of correctness [13, 37, 54, 10] that painstakingly relate their

high-level semantics with the low-level semantics of OpenFlow rules. We take a dif-

ferent approach that allows us to exploit our equational theory: We define a syntactic

restriction of NetKAT based on OpenFlow tables, which we call OpenFlow Normal

Form (ONF) and then prove by induction (using purely syntactic arguments) that

NetKAT can be normalized to ONF. We will use similar proof techniques to reason

about pipeline transformations, and so this section serves as an introduction before

moving on to more complex pipeline compilation. Notably, these same techniques can

be applied to Concurrent NetCore population-time policies in order to install them

into CNC tables, so long as the fields read and written by the policy match those

supplied by the tables.

OpenFlow switches use a series of flow tables of rules to process packets. Because

NetKAT supports richer expressions than OpenFlow, we must design compilation

algorithms to “flatten” NetKAT policies into OpenFlow rule tables. The flattening

algorithm proceeds by recursion on the structure of the policy, wherein each policy

transformation is guided by the equational theory of Chapter 2. In fact, the algorithm

68

itself is presented as a proof of correctness of the single-table compilation procedure:

Inductive steps in the proof can be interpreted as recursive calls in the algorithm, and

applications of the equational axioms indicate transformations applied to the policy.

The proof is lengthy and presented in full in Appendix C. A particularly challenging

aspect lies in proving that sequential composition can be normalized: In an OpenFlow

rule table (and thus in ONF) tests cannot be applied after actions, and so compila-

tion must rewrite NetKAT terms—by carefully applying commutativity axioms—to

commute the sequence of tests and actions, bringing tests to the front. This section

highlights some of the important steps that enable the inductive normalization proof.

OpenFlow Normal Form (ONF). An OpenFlow 1.0-capable switch processes a

packet using a table of prioritized rules [41]. In essence, each rule has a bit-pattern

with wildcards to match packets and a list of actions to apply to packets that match

the pattern. If a packet matches several rules, only the highest-priority rule is applied.

Instead of compiling NetKAT to rule tables directly, we define ONF, a syntactic

subset of NetKAT that translates almost directly to rule tables. An ONF term is a

cascade of if-then-else expressions, where the conditionals are a conjunction of positive

literals, and the true branches are summations of actions, emitting one copy for each

summand, or dropping the packet. Note that if-then-else is syntactic sugar.

if b then as else `
def
= (b; as) + (¬b; `)

A policy p is in Openflow Normal Form (p ∈ ONF) when it satisfies the grammar in

Figure 4.2 and a few conditions. For example, consider the following policy.

typ = ssh; out← 1 +


if dstmac then 2 else out← 2

if dstmac then 3 else out← 3

drop



69

ONF Action Sequence a ::= id | f ← n; a
ONF Action Sum as ::= drop | a+ as
ONF Predicate b ::= id | f = n; b
ONF ` ::= as | if b then as else `

Figure 4.2: OpenFlow Normal Form.

This policy monitors SSH traffic by copying it to port 1 and also switches local area

traffic based on destination MAC address. The following is an equivalent policy in

ONF.

if typ = ssh; dstmac = 2 then (out← 1 + out← 2) else

if typ = ssh; dstmac = 3 then (out← 1 + out← 3) else

drop

There are a few side conditions on ONF policies. First, ONF excludes expressions

that modify the switch field sw—this metadata field indicates the current switch

processing the packet. And second, ONF excludes dup, which is used to record the

hops a packet takes across the network for verifying reachability properties.

From NetKAT (and CNC) to ONF. Any NetKAT policy without the dup or

Kleene star operators can be transformed into ONF.1 We call NetKAT policies of

this form “switch local.” Notably, such policies coincide exactly with the fragment of

CNC without concurrency or table variables, as might be supplied by the controller

at population time.

Appendix C contains a detailed proof (Theorem 8) outlining how a switch-local

NetKAT policy can be transformed into an equivalent ONF policy. The proof proceeds

by induction on the structure of the policy, showing for each combinator how sub-

policies in ONF can be combined to form a larger, equivalent policy in ONF. The

proof can also be interpreted as a recursive algorithm to produce an equivalent ONF

1A NetKAT compiler will need a means of compiling Kleene star and specializing a network-
wide policy to each switch, whereas the CNC language excludes Kleene star and already focuses
on the pipeline within a single switch. Appendix C covers star elimination and switch localization
procedures for NetKAT, offering a sense how CNC might be extended with similar constructs.

70

policy. The proof is lengthy and describes structural policy transformations in great

detail, and the full presentation is relegated to the technical appendix.

As an example, consider the case for sequential composition: p; q. Suppose that,

recursively, we have already computed equivalent policies in ONF for p and q; the

task remains to combine them sequentially and form a single equivalent ONF policy.

p; q ≡


if b1 then as1 else

if b2 then as2 else

. . .

 ;


if b3 then as3 else

if b4 then as4 else

. . .


This, in turn, can be accomplished by recursively joining the rows of each table: the

first row of the left table with each row of the second, and so on, showing that the

results themselves form a policy in ONF. Through the lens of the equational theory,

this step can be viewed as desugaring the if statements into two large summations,

one for each sub-policy.

≡

 b1; as1+

¬b1; (b2; as2 + ¬b2; . . .)

 ;

 b3; as3+

¬b3; (b4; as4 + ¬b4; . . .)


And distributing both sides using the Dist-L and Dist-R axioms of the equational

theory.

≡ b1; as1; b3; as3+

b1; as1;¬b3; (b4; as4 + ¬b4; . . .)+

¬b1; (b2; as2 + ¬b2; . . .); b3; as3+

¬b1; (b2; as2 + ¬b2; . . .);¬b3; (b4; as4 + ¬b4; . . .)

Let’s start with the first line. By comparing the predicates in b3 with the modifications

in as1, we can compute a new set of predicates b′3 such that as1; b3 ≡ b′3; as1. For

example, suppose as1 = out← 1 and b3 = typ = ssh; out = 1. In this case, we can see

that out ← 1; typ = ssh ≡ typ = ssh; out ← 1 by the axiom PA-Mod-Filter-Comm.

71

And out← 1; out = 1 ≡ out← 1 by PA-Mod-Filter, so we have b′3 = typ = ssh, and

out← 1; typ = ssh; out = 1 ≡ typ = ssh; out← 1.

Similar reasoning, along with an appeal to an induction hypothesis for resolving

the smaller combinations on the last two lines, allows us to transform the entirety of

this policy to ONF. The theorem (and algorithm) goes as follows.

Theorem 2 (Switch-local policies can be compiled to ONF). For all switch-local

policies p, there exists a policy p′ ∈ ONF such that p ≡ p′.

Proof. The proof proceeds by induction on the structure of the policy p. This theorem

appears as Theorem 8 in Appendix C along with a complete proof.

From ONF to physical tables. The single-table compilation algorithm pre-

sented so far transforms switch-local NetKAT policies into OpenFlow 1.0 tables, i.e.

sequences of if statements, one sequence per switch. Each if-statement sequence con-

tains only positive conjunctions as predicates and sums of modifications in the true

branches, where each summand represents one copy of the packet emitted by this

rule. However, our model of physical tables from Section 3.2 is slightly more nu-

anced, consisting of separate match, crossbar, and action stages. We can still make

use of the NetKAT compilation algorithm, but we add a final step transforming its

output into our three-stage model.

First, we observe that in our compilation stack, single-table compilation always

takes place in the transformer, at population time. Population-time rules in Con-

current NetCore do not contain table variables, and, as we saw in Chapter 3, the

concurrent composition operator can always be replaced by sequential composition.

What remains is a fragment of the CNC language that coincides with the switch-local

fragment of NetKAT, making it a suitable target for this single-table compilation.

72

Physical tables

matchi = if f11 = v11; . . . ; f1n = v1n
then acti ← Aj1
else if f21 = v21; . . . ; f2m = v2m
then acti ← Ak2
else . . .

matches = match1 ||match2 || . . .
crossbar = if act1 = A11 + act2 = A11 + . . .

then doA11 ← 1
else if act1 = A21 + act2 = A21 + . . .
then doA21 ← 1
else . . .

actionj = if doAj1
= 1 then perform Aj1’s writes

else if doAj2
= 1 then perform Aj2’s writes

. . .

actions = action1 || action2 || . . .
physical = x : τ

Tb (physical) = matches; crossbar; actions

Figure 4.3: A common model for physical tables, reproduced from Figure 3.5 in
Section 3.2 for convenience.

Next, we observe that single-table compilation always takes place after multicast

consolidation removes packet duplication (presented in Section 4.2). Hence, by con-

struction, we will never compile a policy containing multicast, and the true branch

in the single-table compilation output will contain a sequence of modifications, but

never a sum of sequences. This fragment of ONF can be modeled as follows, where

we write Πipi for p1; p2; . . . ; pn.

ons ::= drop | if Πifi = vi then Πjfj ← vj else ons

Recall from Figure 3.5 in Section 3.2 that we model a single physical table as a

sequence of a match stage, a crossbar, and an action stage. For convenient reference,

the model is reproduced here in Figure 4.3.

73

Definition 2 (Restricted ONF to physical tables).

crossbar drop = (drop, drop, drop)

crossbar if a then p else ons = let m, c, t = crossbar ons in

let v = fresh value in

(if a then act← v else m,

if act = v then dov ← 1 else c,

if dov = 1 then p else t)

The crossbar function transforms an ons table into match, crossbar, and ac-

tion stages recursively. Suppose we examine the first row of an ons table:

if a then p else ons. The predicate a helps form the match stage: If a holds,

then the match stage updates the act field with a unique value v. The crossbar stage

is extended to set dov if act was set to v, tying the match to the appropriate action.

Finally, the action stage applies the original actions p if dov was set. Recursively

applying crossbar yields match, crossbar, and action stages (m, c, t) for the remaining

rows. Note that this is somewhat inefficient. A more sophisticated algorithm would

map unique action sequences in ons to unique values and reuse those values where

the action sequences are repeated.

This extension has also been proved to be semantics preserving, in Section C.1.5.

Lemma 6 (Single-table compilation from ONF to physical tables is semantics pre-

serving). For all ONF tables ons without packet duplication, let m, c, and t be match,

crossbar, and action stages such that m; c; t = crossbar ons, and let fs be the fresh

metadata fields introduced by crossbar, with z = Πf ∈fs f ← 0 zeroing these fields. The

following equivalence holds.

z;m; c; t;≡; z; ons; z

74

Proof. The proof proceeds by induction on the structure of the ons table. This lemma

appears in Appendix C as Lemma 54 along with a complete proof.

4.2 Pipeline Compilation

Pipeline compilation consists of several passes, each of which addresses a discrepancy

between the expressivity of the high-level pipeline policy and the physical restrictions

of the hardware model. In this section, we explore four compiler passes targeting the

RMT architecture, as modeled in Section 3.2.

• Multicast consolidation. The RMT pipeline only supports packet dupli-

cation at one specific stage in the pipeline, whereas a virtual pipeline might

use packet duplication throughout. Multicast consolidation transforms a policy

with arbitrary occurrences of packet duplication (+) into a pipeline wherein

duplication occurs at just a single stage.

• If statement splitting. As we saw in Section 3.2, the RMT pipeline is

composed of a sequence of tables. In order to more efficiently spread one if

statement—as might be produced by multicast consolidation—across multiple

tables, if statement splitting transforms an if statement into two simpler if state-

ments, composed sequentially.

• Field extraction. The RMT pipeline also requires that the output port for

each packet be set during packet duplication. Field extraction moves modifica-

tions of a given field—such as the out field, which indicates the output port—to

an earlier stage of a pipeline.

• Table fitting. The previous passes produce a pipeline of tables, composed se-

quentially, that must be mapped to the sequence of physical tables in the RMT

75

pipeline. Table fitting determines the best mapping, replacing sequential com-

position with concurrent composition where possible to improve performance.

The restrictions present in the RMT architecture are not uncommon; many pipelines

(including FlexPipe) also disallow arbitrary packet duplication, compose physical

tables sequentially, at least in part, and limit field modification to particular places

in the pipeline. Hence, we believe these passes will be useful in targeting other

architectures in the future.

Each pass takes a well-typed policy as input and produces an equivalent, refactored

policy as well as a binding transformer as output.

Definition 3 (Binding transformer). A binding transformer θ is an operator on table

bindings b.

θ ∈ (Var ⇀ Policy)→ Var ⇀ Policy

Binding transformers play the role of the “generated rule translator” from Fig-

ure 1.2. In other words, during the switch population phase, the controller will issue

table bindings b—essentially, closing substitutions, see Definition 1 in Section 3.1—in

terms of the (pre-compilation) virtual pipeline. The job of the binding transformer θ is

to transform table bindings so they can be sensibly applied to the (post-compilation)

physical pipeline configured on the switch.

Not every table binding constitutes a valid update. Definition 4 outlines the

criteria under which a table binding is well formed with respect to a policy it updates.

Definition 4 (Well-formed table bindings). A table binding b is well formed with

respect to a policy p, written p ` b wf, if for all table variables (x : τ) in p, ` (Tb x :

τ) : τ .

A table binding is well formed if the policy substituted for each table is well typed

at the same type annotating the table, and the substituted policy is closed (i.e. does

not contain table variables).

76

4.2.1 Multicast Consolidation

There are two important differences between the kind of multicast (i.e. packet dupli-

cation) that Concurrent NetCore offers and the kind supported by the RMT pipeline

described in Section 3.2. First, multicast may not occur arbitrarily in the RMT

pipeline; rather, there is a fixed multicast stage sandwiched between two pipelines.

Second, the multicast stage must know the destination output port of each packet

copy at the time the packet is copied. Multicast consolidation rewrites a high-level

policy into a form with a distinct multicast stage. The next section describes how field

extraction extracts potential modifications to a given field from a sub-policy—which

we use to isolate writes to the output port to the multicast stage.

Consider the following policy as a small, running example we will explore to

showcase each of the compilation stages.

p , typ = ssh; out← 1 +



if ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else

x : ({dstip} , {out}) + y : ({typ} , {out})


The policy (a.k.a. virtual pipeline) p has three parts. First, the left sub-policy of

the union (typ = ssh; out← 1) statically copies all SSH traffic to port 1, perhaps for

security monitoring. We say this fragment is fixed because it retains this behavior

regardless of any population time updates. The true branch of the if statement

handles local area switching—for the sake of simplicity, two local hosts have been

hard-coded at destination MAC addresses 2 and 3. Finally, the false branch contains

two table variables joined by union; the first governs destination IP routing, to be

filled in at population time, and the second allows more fine-tuned monitoring at

77

population time. If we assume that neither x nor y will make any extra copies of the

packet, then this policy will produce at most three new packets: one emitted from

port 1 if the incoming packet is an SSH packet, another dictated by the table x, and

a third from table y.

Multicast consolidation rewrites p into two stages: the consolidation stage makes

three copies of the packet and sets a set of fresh metadata fields, the combination of

which is unique to each packet, differentiating the three copies.

pc , typ = ssh+ethtyp = arp+¬ethtyp = arp; f1 ← 1+¬ethtyp = arp; f1 ← 1; f2 ← 1

Each summand corresponds to a potential packet copy, but the filters control which

duplicates are made for each specific input packet. For example, only two copies are

made for ARP packets, while non-ARP packets are copied three times, which is in

line with the behavior of the original policy. By convention, the metadata fields are

initialized to zero; hence, typ = ssh indicates that both f1 and f2 are set to 0. Next,

the egress stage replaces the original occurrences of multicast in p with a sequence of

tests on the new metadata fields.

pe ,


if f1 = 0 then

out← 1

else id

 ;



if f1 = 1 then

if ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else
if f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f2 = 1 then

y : ({typ} , {out})

else id


else id


78

The consolidation and egress stages are composed sequentially. Hence, pc; pe acts

equivalently to p, producing at most three packets: one processed by out← 1, another

by x : ({dstip} , {out}), and a third by y : ({typ} , {out}).

There is one final point to consider before moving on from this example. We

began by assuming that, at population time, the controller will not install new poli-

cies into either x or y that copy the packet. But, suppose the controller could in-

stall population-time policies that emitted additional packet copies. In this case, the

compiler takes three additional steps. First, extra table variables are added to the

consolidation stage (pc), one per table variable in the original policy. Second, table

variables in the egress pipeline (pe) are replaced with fresh table variables. And fi-

nally, the compiler produces a transformer θ that applies multicast consolidation to

policies destined for x and y at population time, placing the results into the new

tables inserted into pc and pe.

To capture this formally, we define syntactically restricted forms for the consolida-

tion and egress stages that model consolidated packet duplication and tagging. The

consolidation form is similar to the multicast stage presented in Figure 3.7 but slightly

higher-level, in that it may contain table variables and additional field modifications—

later compilation phases will factor these out.

Definition 5 (Multicast-free CNC). Let r range over multicast-free CNC policies.

Definition 6 (Multicast consolidation stages).

consolidation sequence s ::= Πifi ← 1 | (x : τ); Πifi ← 1

consolidation stage m ∈ M ::=
∑

i ai; si

egress stage n ∈ N ::= id | n; (x : τ) | n; r

| n; if Πifi = 1 then r else id

79

A consolidation sequence is a sequence of zero or more modifications to metadata

fields, written Πifi ← 1, where zero modifications stands for the identity policy id.

Each metadata field is linked to an instance of packet duplication (p+q) in the original

policy, and the value of the field indicates whether the left or right sub-policy should be

applied to the packet—f ← 0 for p, and f ← 1 for q. As metadata fields are initialized

to zero, the consolidation sequence only updates metadata fields to 1. The original

policy will likely contain table variables, and the controller may install population-

time rules into these tables that contain packet duplications. Consolidation sequences

can also contain table variables, allowing the transformer to extend the consolidation

stage at population time.

The consolidation stage is a sum of consolidation sequences, where zero summands

indicates the policy drop. Each consolidation sequence corresponds to one copy of the

packet, and the modifications in the sequence set the metadata that tags each packet.

A predicate ai guards each consolidation sequence with the conditions in the original

policy that lead to this packet duplication. For example, consider just the if statement

found in the example policy introduced earlier.

if ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

drop

else

x : ({dstip} , {out}) + y : ({typ} , {out})

In this sub-policy, an ARP packet will not be copied; rather, it will be emitted from

either port 1 or port 2, or dropped. A non-ARP packet, on the other hand, will

be copied and processed by both x and y. A consolidation stage for this policy will

contain three consolidation sequences, one for the true branch, and one for each sub-

80

policy in the duplication operation in the false branch. But the policy will emit at

most two packets, not three, depending on whether the predicate typ = arp holds on

the incoming packet. And so the first two consolidation sequences are guarded by

the predicate typ = arp and the latter two by ¬(typ = arp), yielding the following

consolidation stage.2

typ = arp+ ¬typ = arp+ ¬typ = arp; f2 ← 1

In general, each consolidation sequence corresponds to one sub-policy of a packet

duplication operation, and the predicate ai contains the conditions that must hold

for an incoming packet to reach that duplication operation in the original policy.

The egress stage is a sequence of duplication-free sub-policies extracted from the

original policy. Each clause of the egress stage uses the metadata bits set in the

consolidation stage to decide whether a given copy of the packet should be processed

by that stage—guarded stages take the form if Πifi = v then r else id, and stages with

no guard (r) are applied to every packet copy. A packet copy may be processed by

more than one egress stage when packet duplication is nested inside packet duplication

in the original policy, as the example earlier in this section demonstrates.

The pipeline function (Definition 7, continued in Definition 8) is a syntax-directed

policy transformation that consumes a virtual pipeline p and produces a consolidation

stage mout, an egress stage n, and a transformer θ. The function also takes an input

consolidation stage min. Intuitively, min represents the consolidation stage that has

been built up “so far” as pipeline executes recursively, and mout includes both min

and any multicast operations in p, and pipeline s p min maintains the invariant that

p;min ≡ mout;n. As we will see, phrasing the pipeline function to include min greatly

2This is an intermediate consolidation stage generated for this policy fragment; it will be mod-
ified to eventually produce the consolidation stage pc described earlier. Definition 7 describes the
algorithm in full.

81

Definition 7 (Multicast consolidation). Let pipeline p be a function from metadata
predictions, policies, and egress stages to policies. The function pipeline is defined as
follows.

pipeline :: (Var→ Nat)→ Policy→ M→ (M× N×Θ)

pipeline s p drop = (drop, drop, id)
pipeline s id m = (m, id, id)
pipeline s drop m = (drop, drop, id)

pipeline s b (
∑

i ai; qi) = ((
∑

i b; ai; qi), b, id)

pipeline s f ← v (m+ a; q) = let (f = v; a′) = specialize (f = v) a in
let m1, n1, θ1 = pipeline s f ← v m in
if f = v; a′ ≡ drop then

(m1, n1, θ1)
else

((m1 + a′; q), f ← v, θ1)

pipeline s f ← v (m+ a; (x : τ); q) = let τ1 = typeof (a; (x : τ); q) in
let θ1 = (λb, y.

let m1, , =
pipeline s f ← v (Tb a; (x : τ); q)

if y = x1 then m1 else Tb y) in
let m2, n2, θ2 = pipeline s f ← v m in
((m2 + (x1 : τ1)), f ← v, θ2 ◦ θ1)

pipeline s x : (R,W) m = let fs = s(x) fresh metadata fields in
let τ = typeof m in
let tm = y : (R, fs) ∪ τ in
let tn = z : (R ∪ fs ,W) in
let θ′ = (λb, w.

let m′, n, θ = pipeline s (Tb x) (Tb m) in
if w = y then m′

else if w = z then n
else Tθ b w) in

(tm, tn, θ
′)

82

Definition 8 (Multicast consolidation (continued from Definition 7)).

pipeline s (if b then p1 else p2) m = let Σiai; qi, n1, θ1 = pipeline s p1 m in
let Σjaj; qj, n2, θ2 = pipeline s p2 m in
((Σib; ai; si + Σj¬b; aj; sj),
(qualify b n1); (qualify ¬b n2), θ1 ◦ θ2)

pipeline s (p1 + p2) m = let f = a fresh metadata field in
let m1, n1, θ1 = pipeline s p1 m in
let Σjaj; qj, n2, θ2 = pipeline s p2 m in
let n′1 = qualify f = 0 n1 in
let n′2 = qualify f = 1 n2 in
((m1 + Σjaj; f ← 1; qj), n

′
1;n

′
2, θ1 ◦ θ2)

pipeline s (p1; p2) m = let m2, n2, θ2 = pipeline s p2 m in
let m1, n1, θ1 = pipeline s p1 m2 in
(m1, n1;n2, θ2 ◦ θ1)

pipeline s (p1||p2) m = pipeline s (p1; p2) m

Definition 9 (Specialization). Let specialize f = v a be the unique homomorphism
of Concurrent NetCore defined on primitive programs by:

g(id) , id

g(drop) , drop

g(f = v′) ,

{
id if v = v′

drop otherwise

specialize f = v p , f = v; g(p)

Definition 10 (Qualify n with a).

qualify :: Predicate→ N→ N
qualify a id = id
qualify a x : τ = if a then x : τ else id
qualify a (n; r) = (qualify a n); if a then r else id
qualify a (n; if b then r else id) = (qualify a n); if a; b then r else id

83

simplifies the sequencing case (p = p1; p2). The first call to pipeline takes the empty

consolidation stage (id) as input.

Finally, the pipeline function also requires a compile-time estimation s that maps

table variables to the maximum number of packet duplications allowed at popula-

tion time, which is used to reserve space for population-time packet duplication by

inserting new table variables matching on reserved metadata fields into consolidation

sequences and the egress stage. At population time, the translator will transform

policies intended for the original table variable (i.e. virtual table) into additional

modification sequences for the consolidation sequences and additional extracted poli-

cies for the egress stage.

As we explore the details of the pipeline function, our focus will be on producing

an mout and n to preserve the equivalence p;min ≡ mout;n, often accompanied by

informal reasoning to that effect. We shall prove this equivalence more formally later

on, in Theorem 3.

The base cases are straightforward, save for field modification. When p = drop

or min = drop, the policy as a whole is equivalent to drop (by [KA-Seq-Zero] and

[KA-Zero-Seq] from Chapter 2), and so the consolidation and egress stages may be

drop as well. When p = id, then p commutes with min. Field matches (p = f = v)

are prepended to the predicate guarding each consolidation sequence in min, eagerly

dropping packets that do not match. By construction, consolidation stages only mod-

ify metadata fields, which do not appear in the original policy, and so field matches

commute with min.

The case where p = f ← v is made complicated by the presence of the predicates

ai found in consolidation sequences: Our intention is to commute the sequence f ←

v;min, but predicates in min may depend on the value of the field f being modified.

Hence, we must produce a new predicate a′i that reflects the impact of the field

modification on a. This strategy works when ai exists at compilation time, but

84

consolidation sequences may also contain table variables to extend the consolidation

stage at population time.

The pipeline function handles the non-table case separately. Suppose we have a

consolidation sequence a; q (without a table). First, note that a; q; f ← v ≡ a; f ←

v; q, because (by construction) the modifications in consolidation sequences only mod-

ify metadata fields, not fields in the policy. If each primitive operation within a

predicate commutes with f ← v, then the entire predicate also commutes (Lemma

KAT-Commute from Figure 2.5). The specialize function (Definition 9) produces a

new predicate a′ by replacing each primitive operation in a with id when it matches the

same field and value being modified and with drop when it matches the same field but

a different value. And by again employing the KAT-Commute lemma, it follows that

if a′ = specialize f = v a, then f ← v; a ≡ a′; f ← v. Hence, a; q; f ← v ≡ f ← v; a′; q.

The pipeline function repeats these steps for each consolidation sequence.

On the other hand, suppose that the consolidation contains a table variable: a; (x :

τ); q. Rather than specializing a, which cannot be done without knowing the contents

of the table variable x, the pipeline function instead defers specialization to population

time, when the contents of x are known: The consolidation sequence is replaced by a

new table variable, x1, and the transformer θ1 takes a table binding b (to be supplied

at population time) and applies pipeline to the new policy bound in place of the

original table variable x, producing a new table binding that installs the resulting

consolidation stage when applied to the new table x1. The same steps are repeated

for each consolidation sequence, composing the transformers at each step.

Table variables are another tricky case—we must use the s argument to estimate

how much packet duplication may occur at population time and reserve additional

metadata fields to support future refactoring. Applied to a table variable, the pipeline

function produces a transformer θ that, in turn, compiles all future table updates

b—using s to preallocate metadata fields for future updates. A key property of well-

85

formed table updates is that they produce closed terms—hence, invoking pipeline

inside θ on the updated table b x runs no risk of divergence.

If statements require special handling. Recall that if a then p else q desugars to

a; p + ¬a; q. Despite employing the union operator (+), if statements never produce

multiple packets; rather, at least one branch is guaranteed to drop the packet, as a

consequence of the law of excluded middle and the axiom of predicate contradiction,

which state that either a predicate or its negation holds (BA-Excl-Mid) but not both

(BA-Contra). As there is no packet duplication to consolidate, if statements are

treated like filters: the pipeline function is invoked recursively on the branches, the

if statement predicate b is prepended to the predicates in the resulting consolidation

sequences, and the transformers are composed.

As one might expect, the bulk of the work takes place in the multicast case.

Given a policy p + q, our strategy is as follows. First, recursively consolidate p and

q, producing two consolidation stages that eagerly produce and tag any additional

packet copies found within p and q, as well as egress pipelines that process those

copies. Then, pick a fresh field f that neither the consolidation nor egress stages of

p or q use. For each sequence in the consolidation stage produced from q, set f to

1; metadata fields are initialized to zero, and so no modification of p’s consolidation

stage is necessary. Finally, add a predicate to each egress pipeline from p with f = 0

and from q with f = 1—the qualify function (Definition 10) accomplishes this by

transforming if a then n else id into an egress pipeline n′ with the predicate a conjoined

to the guard in each subsequent if statement. The resulting, combined consolidation

stage contains all the sequences from p and q, but with an additional tag bit; and

the resulting, sequenced egress pipelines differentiate the copies by examining the

additional bit. By construction, θ functions extend the domain of table bindings to

accommodate new table variables. Hence, we can simply compose the θ functions

produced by recursive compilation.

86

The sequencing case, where p = p1; p2, simply invokes pipeline recursively first on

p2 and then on p1. And finally, the concurrency case reduces to the sequential case

by Lemma 5; concurrency can be recovered later in the compilation process.

Example. As a further example, let’s look at how multicast consolidation works on

the r+m fragment of the example policy from the beginning of Chapter 3, reproduced

here for convenience.

r , in = 1; out← 2 + in = 2; out← 1

m , (x : ({typ, src} , {out}))

Recall that m contains a table variable—and the controller, at population time, may

install a policy into m that duplicates some packets. The compiler relies on a hint,

s, that pre-allocates metadata fields corresponding to the amount of multicast that

future updates may contain. Let fs = s x be a set of such fields. The policy produced

by pipeline s (r +m) id will be

(f ← 0 + f ← 1; y : (∅, fs));

(if f = 0 then r else id);

(if f = 1 then z : ({typ, src} ∪ fs , {out}) else id),

and the binding transformer θ will be

(λb, w.let q, r, θ′ = pipeline s (Tb x) in

if w = y then q else if w = z then r elseTb w).

We introduce a fresh metadata field f to consolidate multicast in a single stage and

tag each packet copy, and the remainder of the policy uses the tag to determine

whether to apply r or m to each fragment. Because m contains a table variable x,

87

we also add new tables y and z to handle any multicast that m may contain in the

future—and we produce a function θ to ensure this.

Now, suppose a population-time update arrives to x as part of a well-formed table

binding, b. Applying θ b to the compiled policy will consolidate any multicast present

in b and install appropriate policies in y and z. Since Tb x produces a closed policy,

θ′ (the result of reapplying the pipeline function within the binding transformer θ) is

always the identity function.

Overhead. There are two forms of overhead that may be introduced as part of

multicast refactoring: (1) a fresh metadata field is required for each occurrence of

packet duplication; and (2) the operands of each packet duplication operation are

instrumented to match an extra metadata bit, which may require wider tables at the

expense of depth, i.e. the number of rules that may be installed. However, the RMT

architecture has several predicates on metadata built into the pipeline, such as the

“next table” operation. In the future, it would be interesting to explore using these

and other mechanisms to reduce the overhead introduced at this stage.

Proof of semantic preservation. Finally, we prove that the original policy is

equivalent to the compiled policy for all table updates. We use z to model the fact

that metadata is initially assigned a value of 0 when the packet arrives at the switch,

and that metadata is not observable once the packet has left the switch.

Theorem 3 (Multicast consolidation preserves semantics). For all policies p, types

τp = (Rp,Wp) and τm = (Rm,Wm), consolidation stages m1, metadata annotations s,

contexts Γ, and table bindings b, if

1. p ` b wf and m1 ` b wf, and

2. Γ ` p : τp and Γ ` m1 : τm, and

3. m2, n, θ = pipeline s p m1,

88

and let z = Πifi ← 0, for all metadata fields fi introduced in pipeline s p m1, then

1. m2 ` θb wf and n ` θb wf, and

2. there exists Γ′ and Γ′′ such that

• Γ′ = Γ,Γ′′, and

• Γ′ ` m2 : (Rm ∪ Rp ∪Wp,Wm ∪ {fs}), and

• Γ′ ` n : (Rp ∪ fs ,Wp), and

3. Tb z; p;m1; z ≡ Tθb z;m2;n; z.

Proof. The proof proceeds by induction on the structure of p and m1, relying on

Lemmas 4 and 5 and the axioms of NetKAT [2] to establish equivalence. This theorem

appears as Theorem 9 in Appendix C and is proved there in full.

4.2.2 If De-nesting

The multicast consolidation phase produces an egress pipeline, which is made up of a

sequence of if statements. This is convenient, because the RMT pipeline is composed

of a series of tables in sequence, making the mapping simpler. Unfortunately, as we

saw in the running example, the recursive nature of multicast consolidation may nest

egress pipelines generated from sub-policies inside if statement branches. This stage

breaks apart if statements with complex policies in each branch into two if statements

in sequence, each with a single complicated branch. As such, it allows one large if

statement to more easily be split into two tables.

After applying multicast consolidation to the running example p, we have a con-

solidation stage pc and an egress pipeline pe. We will focus on the larger if statement

89

in pe.

if f1 = 1 then

if ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else
if f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f2 = 1 then

y : ({typ} , {out})

else id


else id

The first step is to combine nested if statements in an entirely standard way.

if f1 = 1; ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else if f1 = 1 then
if f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f2 = 1 then

y : ({typ} , {out})

else id


else id

The general algorithm for if statement flattening is as follows.

Definition 11 (If statement flattening).

flatten if a then (if b then p else q) else r = if a; b then p else (if a then q else r)

90

And, by way of the equational theory, we can show that Definition 11 produces

an equivalent policy.

Lemma 7 (If flattening preserves semantics). For all well-typed predicates a and b

and policies p and q and r, the following equivalence holds.

if a then (if b then p else q) else r ≡ if a; b then p else (if a then q else r)

Proof. The proof goes by a series of applications of the equational axioms. This

lemma appears as Lemma 69 in Appendix C, along with the sequence of axioms

applied and the transformations they yield.

The next step is to split the if statement into two, using a fresh field f3.



if f1 = 1; ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

elsef3 ← 1


;



if f3 = 1; f1 = 1 then
if f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f2 = 1 then

y : ({typ} , {out})

else id


else id


Definition 12 (If de-nesting). Let denest be a function defined as follows, where f is

a fresh field.

denest (if a then p else q) = (if a then p; f ← 1 else id); (if f = 0 then q else id)

denest = ⊥

91

At first glance, this transformation makes the policy larger. But note that we

have transformed a single term (the original if statement) with two potentially large,

complex branches (p and q), into the sequence of two new if statements with p and q

distributed between them. Many switching architectures support sequences of tables,

but we are not aware of any that support if statements directly; rather, if statements

can be compiled to a single table (as per Section 4.1) with some overhead. The

sequence of two if statements can be deployed to two tables in sequence with less

overhead.

Finally, we can extend if statement flattening to flatten nested sequences of if

statements. Applied to our example, it yields the following equivalent policy.



if f1 = 1; ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else f3 ← 1


;


if f3 = 1; f1 = 1; f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f3 = 1; f1 = 1; f2 = 1 then

y : ({typ} , {out})

else id


Definition 13 presents the steps necessary to flatten a sequence of if statements.

The definition is tailored to the output of the multicast consolidation stage, wherein

the false branch of if statements in the egress pipeline is always id.

92

Definition 13 (If statement sequence flattening).

flatten



if a then

(if b then p else id);

q

else id


=

(if a; b then p else id);

(if a then q else id)

flatten = ⊥

Flattening can be applied recursively across the sequence of nested if statements. The

correctness of this transformation hinges on the nature of the if statements generated

by the compiler; specifically, that the if statement predicates match on metadata

introduced in previous compilation stages, which is not used in the branches of the if

statement.

Lemma 8. For all well-typed predicates a and b and policies p and q, if a; p ≡ p; a,

then

if a then (if b then p else id); q else id ≡ (if a; b then q else id); if a then q else id.

Proof. The proof proceeds by a series of transformations guided by the equational

theory. This lemma appears as Lemma 71 in Appendix C along with a full proof.

Together, Definitions 11, 12, and 13 combine to transform egress pipelines pro-

duced by multicast consolidation into sequences of flattened, de-nested if statements.

Note that the output, although simplified, is still a syntactically valid egress pipeline

as defined in Definition 6.

93

4.2.3 Field Extraction

The RMT architecture also requires that the output port of each packet be set during

the multicast stage. Field extraction examines a policy to determine all the conditions

under which any modification to a given field may take place, and then rewrites the

policy so that modifications to that field happen first. Continuing with our example,

suppose we wish to extract modifications to the out field.


if f1 = 0 then

out← 1

else id

 ;



if f1 = 1; ethtyp = arp then

if dstmac = 2 then out← 2 else

if dstmac = 3 then out← 3 else

else drop

else f3 ← 1


;


if f3 = 1; f1 = 1; f2 = 0 then

x : ({dstip} , {out})

else id

 ;


if f3 = 1; f1 = 1; f2 = 1 then

y : ({typ} , {out})

else id


There are five points in this example where the out field might be set: once in the

first if statement (out← 1), twice in the second (out← 2 and out← 3), once in the

third (in x), and once in the fourth (in y). The choice of which of these assignments

occurs depends on the predicates guarding them. Hence, field extraction rewrites the

policy into two stages: the extraction stage tests the incoming packet and applies the

appropriate modification, and a second stage comprising an instrumented version of

the input policy.

As with multicast consolidation, the field extraction algorithm is also tuned for the

sequential case. Let’s begin constructing an extraction stage for our running example

94

by examining the right-most if statement in the sequence.


if f3 = 1; f1 = 1; f2 = 1 then

y : ({typ} , {out})

else id


We start by pretending that an “empty” extraction stage exists in the sequence, to

the right of the if statement. Our goal is build an extraction stage preceding the if

statement that (a) extracts any modifications to the out field, and (b) “pushes” the

initial extraction stage from right to left. In this case, that stage is empty, and so

we end up with the following policy, with the extraction stage on the left and the

instrumented policy on the right.



f3 = 1; f1 = 1; f2 = 1; f4 ← 1;

(y1 : ({typ} , {out} ∪ fs))

+

¬(f3 = 1; f1 = 1; f2 = 1); id


;


if f4 = 1 then

y2 : ({typ} ∪ fs , ∅)

else id



In the original policy, the table variable y may, at population time, be replaced with

a policy that matches on typ and modifies the out field. Hence, we do two things.

First, we replace y with a new table, y2, which can read the same fields as y, along

with extra metadata fields fs reserved for use at population time, and can write to the

same fields as y, barring the out field—which, in this case, means that y2 cannot write

to any fields at all, although it can still drop packets. Next, we replace the predicate

guarding the if statement with a test on a fresh metadata field f4, the reason for which

will be apparent shortly.

The extraction stage contains two clauses connected by union. The first is guarded

by the original if statement predicate, testing fields f3, f1, and f2. It also sets the

new field f4 and contains another new table, y1, which can read the typ field and

95

write to the out as well as the new metadata fields fs . The metadata field f4 is not

strictly necessary in this case, but it guards against the case where the original if

statement predicate depends on the original value of the field being extracted—in

that case, moving the field modification before the test would change the semantics

of the program.

The second clause of the extraction stage corresponds to the false branch of the

original if statement, in which no modification occurred. Because this stage takes

place after multicast consolidation, which removes any instances of packet duplication,

and because field extraction is semantics preserving, it follows that the clauses of the

field extraction stage are disjoint; despite the union operator, only one clause will

match an incoming packet.

Field extraction also produces a transformer, θ, which applies field extraction to

policies destined for the virtual table y in the original pipeline, placing the results

into y1 and y2. Field extraction produces the following transformer for this fragment.

θ ,



λb, z.

let e1, p, id = extout s (Tb x) id in

if z = y1 then e1

else if z = y2 then p

else Tb(z)


Here, b is a table binding to be transformed, and z is a table variable to be replaced

with the result of the transformed table binding. First, the original virtual table

variable, x, is transformed according to the binding b (the result of Tb x) and supplied

to the field extraction algorithm (extout s (Tb x) id). If z is y1, then y1 is replaced

with e1, the resulting extraction stage. Otherwise, if z is y2, then y2 is replaced by

p, the instrumented policy. Finally, if z is some other table variable unrelated to this

particular transformation, the original binding b is used to transform it.

96

Applying field extraction to the entirety of the egress pipeline in our running ex-

ample results in the following extraction stage pg and instrumented egress pipeline p′e,

taking into account simple optimizations like removing summands that are equivalent

to drop from the extraction stage.

pg ,



f1 = 0; f7 ← 1; out← 1

+ f1 = 1; ethtyp = arp; dstmac = 2; f3 = 1; f2 = 0; f5 ← 1; f6 ← 1; f8 ← 1;

out← 2; (x1 : ({typ, dstip} , {out, f4} ∪ fs))

+ f1 = 1; ethtyp = arp; dstmac = 3; f3 = 1; f2 = 0; f5 ← 1; f6 ← 1; f9 ← 1;

out← 3; (x1 : ({typ, dstip} , {out, f4} ∪ fs))

+ ¬(ethtyp = arp); f3 = 1; f1 = 1; f2 = 0; f5 ← 1;

(x1 : ({typ, dstip} , {out, f4} ∪ fs))

+ ¬(ethtyp = arp);¬(f3 = 1; f1 = 1; f2 = 0); id



p′e ,


if f7 = 1 then

id

else id

 ;



if f6 = 1 then

if f8 = 1 then id else

if f9 = 1 then id else

else drop

else f3 ← 1


;


if f5 = 1 then

x2 : ({dstip} ∪ fs , ∅)

else id

 ;


if f4 = 1 then

y2 : ({typ} ∪ fs , ∅)

else id


Of course, there is a bit of redundancy in this policy. For example, both branches of

the left-most if statement are id, and so the entire if statement could be replaced with

id. This, in turn, makes setting the field f7 unnecessary in the extraction stage. These

and other, similar optimizations follow directly from the structure of the equational

97

theory and can be applied throughout the compilation process. However, we leave a

more thorough investigation of such optimizations to future work.

We define a modification stage (Definition 14) as a special syntactic form cap-

turing the field modifications extracted from the policy, along with any metadata

modifications used as part of the extraction. Specifically, a modification stage is a

disjunction of modification sequences, where each modification sequence characterizes

one potential field modification coupled with associated metadata modifications.

Definition 14 (Modification stage).

modification sequence m ::= Πifi ← vi
| Πifi ← vi; (x : τ)

modification stage e ∈ E ::=
∑

j aj;mj

Each modification sequence corresponds to a trace through the original policy

that ends with a modification of the given field. The predicate aj with each sequence

holds the conditions of any if statements along the trace that must be true (or false)

for the modification to take place, as well as any predicates that match on the field

“upstream” from its modification in the original policy, because the ordering of such

matches must be preserved. The modification stage is the sum of all such paths.

As with multicast refactoring, field extraction has two goals: to rewrite a given vir-

tual pipeline to extract any fixed field modifications—i.e. modifications built directly

into the virtual pipeline—into a fixed modification stage, and to produce a trans-

former that will similarly extract field modifications installed at population time.

The table variable in the modification sequences is inserted as a placeholder that will

hold additional modification sequences extracted at population time.

The function extf s p e (Definition 15) performs field extraction. As input, it

takes the field to extract (f), a prediction of the number of metadata fields required

to support field extraction for each table at population time (s), and the policy (p).

The function proceeds by bottom-up traversal of the policy, and takes the modification

98

stage (e) that has been built up “so far” as the final argument; internally, this allows

the function to accumulate modification stages. At the top level, this compilation

pass is applied to the policy p with an empty multicast stage (e = id).

The field extraction function produces three artifacts. Given a policy p and a

modification stage e, it produces a new policy p′ wherein modifications of the field

f have been removed, and it produces a new modification stage e′ that contains the

modifications of f in p. Of course, p may contain table variables, and so the function

also produces a transformer θ to extract field modifications from population-time

updates—both p′ and e′ may contain new table variables for θ to populate. Ultimately,

the transformed policy should behave the same as the new policy; that is, for all table

bindings b that might be produced at population time, it should be the case that

Tb p; e ≡ T(θb) e
′; p′.

The field extraction function is recursive in both the structure of the policy and

also the structure of the modification stage. The first few base cases are straightfor-

ward: Given a policy or modification stage of drop, as in extf drop e or extf p drop,

the result is essentially drop with the empty transformer θ = id. When the policy is

id, as in extf id e, then the modification stage commutes with the policy.

Suppose we reach a match statement, p = f ′ = v. If this is a predicate on the

field being extracted, then the predicate must be preserved before the modification

by prepending it to each modification sequence. But matches on other fields are

unrelated, and so the match and the modification stage commute. Note that the id

policy is always returned when f = f ′ and f ′ = v otherwise, as the policy component

is independent of the contents of the input modification stage in this case. And as

there are no tables in the policy, the transformer is simply the identity function.

The case for table variables is more interesting. Given a table variable x that can

read and write sets of fields R and W, we defer further compilation to population

time by bundling a second call to ext in a transformer and returning two new table

99

Definition 15 (Sequenced field extraction). Let extf s p e be a function with the
following type.

extf :: (Var→ Nat)→ Policy→ E→ (E× Policy ×Θ)

The function extf s p e is defined as follows.

extf p drop = (drop, id, id)
extf id e = (e, id, id)
extf drop e = (drop, drop, id)

extf s b (e+ a;m) = let (R,) = typeof b in
if f ∈ R then

let e′, , = extf s b e in
((e′ + b; a;m), id, id)

else
((e+ a;m), b, id)

extf f ′ ← v (e+ a; Πifi ← vi) = let (f ′ = v; a′) = specialize (f ′ = v) a in
let e′, p′, θ = extf (f ′ ← v) e in
if (f ′ = v; a′) ≡ drop then

(e′, p′, θ)
else if f = f ′ then

((e′ + a′; f ′ ← v; Πifi ← vi), id, θ)
else

((e′ + a′; Πifi ← vi), f
′ ← v, θ)

extf s (f ← v) (e+ a; q; (x : τ)) = let e1 = a; q; (x : τ) in
let τ1 = typeof e1 in
let p1 = x1 : τ1 ∪ (∅, {f }) in
let θ1 = (λb, y.

let e2, p2, θ2 =
extf s (f ← v) (Tb e1)

if y = x1 then e2
else Tb y) in

let e2, , θ3 = extf s (f ← v) e in
if f = f ′ then

(e2 + p1, id, θ3 ◦ θ1)
else

(e2 + p1, f
′ ← v, θ3 ◦ θ1)

100

Definition 16 (Sequenced field extraction, continued from Definition 15).

extf s (x : (R,W)) e = let fs = s(x) fresh fields in
let τ = typeof e in
let θ =

(λb, z.
let e1, p, id = extf s (Tb x) (Tb e) in
if z = w1 then e1
else if z = w2 then p
else Tb(z)) in

let e′ = (w1 : (R, f ∪ fs) ∪ τ) in
let p′ = (w2 : (R ∪ fs ,W \ f)) in
(e′, p′, θ)

extf s (if b then p else q) e = let f ′ = a fresh field in
let (

∑
i a1i;m1i), p1, θ1 = extf s p e in

let (
∑

j a2j;m2j), q2, θ2 = extf s q e in

let e′ =
∑

i b; a1i; f ′ ← 1;m1i+∑
j ¬b; a2j;m2j in

(e′, if f ′ = 1 then p1 else q2, θ2 ◦ θ1)

extf s (p; q) e = let e1, q1, θ1 = extf s q e in
let e2, p2, θ2 = extf s p e1 in
(e2, p2; q1, θ2 ◦ θ1)

extf s (p || q) e = let e1, q1, θ1 = extf s q e in
let e2, p2, θ2 = extf s p e1 in
(e2, p2; q1, θ2 ◦ θ1)

extf (p+ e) = ⊥

101

variables (w1 and w2), one to hold future modification stages and the other to hold

future instrumented policies. Said instrumentation takes place in the transformer θ,

which is a function from a table binding b and a table variable z to a policy. Given

such a binding at population time, θ invokes field extraction on the policies produced

by applying b, producing a new modification stage e1, an instrumented policy p, and

the empty transformer id (which is always produced when compiling closed terms, as

produced by well-formed table bindings). The remainder of θ maps the table variables

w1 and w2 to e1 and p.

Compiling an if statement, as in extf s if b then p else q e, proceeds first by

recursing through the branches to produce two new modification stages along with

new instrumented policies for the branches. The final policy is produced by replacing

the predicate b with a test of a fresh metadata field f ′, and replacing the branches

with the corresponding instrumented versions. And the final modification stage is

produced by prepending b to each modification sequence from the true branch, along

with a modification f ′ ← 1 setting the metadata field to 1 (which ensures the proper

branch is taken in the instrumented policy). Each sequence in the false branch is

prepended with ¬b (metadata fields are initialized to 0 by default), and the final

modification stage is the sum of the branch stages.

Sequencing proceeds by straightforward recursion, pushing the results from right

to left and composing the resulting transformers. Concurrency proceeds in the same

way, but first converting to sequencing. (The concurrency can be recovered later.)

Finally, the case that requires the most detail appears in Definition 16: field

modification. Processing a field modification policy also proceeds inductively on the

input modification stage, and the two types of modification sequences are handled

differently. Sequences that do not contain a table variable can be processed directly.

First, recall that our goal is to produce a new policy p′ and modification stage e′ such

102

that the equivalence

f ′ ← v; (e+ a; Πifi ← vi) ≡ e′; p′

holds. Reasoning about this equivalence using the equational theory guides the al-

gorithm in this case. For example, note that the modification distributes across the

sum, yielding

f ′ ← v; e+ f ′ ← v; a; Πifi ← vi.

On the left operand, we invoke extf s f ′ ← v e recursively, yielding e′, p′, θ. And

on the right, we make two observations. First, that f ′ ← v ≡ f ′ ← v; f ′ = v by the

[Mod-Match] axiom. And second, that for any predicate a, we can produce a predicate

a′ such that f ′ = v; a ≡ f ′ = v; a′ and f ′ = v; a′ ≡ a′; f ′ = v. The process, called

specialize and detailed in Definition 9, produces a′ by merging matches on f ′ in a.

When f ′ = v; a′ is equivalent to the empty policy, the trace corresponding to

this modification sequence will drop every packet—perhaps the modification sets one

value and the predicate immediately tests the same field for a different value, for

example—and this modification sequence can be dropped. Otherwise, if the field

modified and the field extracted are the same, then the modification is moved to

the modification stage and replaced with id in the policy. Finally, if the fields are

different, then the modification remains and the predicate a is replaced with a′ in the

modification sequence, reflecting the effect of f ′ ← v.

Modification sequences that contain table variables, such as e+a; q; (x : τ), require

different handling. Recall that in this sequence, a holds the conditions under which

modifications appearing in x may occur; q marks the appropriate metadata bits; and

x itself will hold population-time updates to the field and to additional metadata. In

this step, we build a transformer θ1 that defers compiling this modification sequence

until population time, and we introduce a new table variable x1 to take its place in the

modification stage. If the field modified is the same as the field extracted, then the

103

modification is replaced with id in the resulting policy; otherwise, the modification

remains unchanged.

Overhead. As with multicast refactoring, field extraction introduces overhead

in the form of metadata fields and rule space in physical tables: at worst, a fresh

metadata field is required for each if statement in the policy. But unlike multicast

refactoring, the rule space overhead in field extraction is incurred in the size of the

modification stage, which can grow exponentially in the size of the original policy:

one modification sequence for each combination of values assigned to the metadata

fields.

Proof of semantic preservation. As with multicast consolidation, we show

that when metadata has been zeroed at the beginning and end of the policy, the

interpretation of the original and compiled forms are equivalent for all table updates.

Theorem 4 (Field extraction preserves semantics). For all multicast-free policies r,

modification stages e, table bindings b, contexts Γ, and fields f , if

1. r ` b wf and e ` b wf, and

2. Γ ` r : (Rr,Wr), and Γ ` e : (Re,We), and

3. Rr ∩We = {f } and Wr ∩We = {f }, and

4. (e′; r′, θ) = extf s r e, and

and let z = Πifi ← 0, for all metadata fields fi in the set of fresh metadata fields fs

introduced in extf s r e, then

1. e′ ` θb wf and r′ ` θb wf, and

2. there exists Γ′ and Γ′′ such that

• Γ′ = Γ,Γ′′, and

104

• Γ′ ` r′ : (Rr,Wr \ {f }), and

• Γ′ ` e′ : (Re ∪ Rr,We ∪ {f } ∪ fs), and

3. Tb (z; r; e; z) ≡ Tθ b (z; e′; r′; z).

Proof. By induction on the structure of r and e, relying on Lemmas 4 and 5 and the

axioms of NetKAT [2] to establish equivalence. This theorem appears and is proved

in full as Theorem 10 in Appendix C.

4.2.4 Table Fitting

At this stage of the compilation process, every occurrence of parallel composition

has been consolidated to a single multicast stage, appropriate for deployment to the

RMT’s multicast stage. What remains are table variables, predicates, field modifica-

tions, and if statements joined by sequential and concurrent combinators, as we can

see in the egress pipeline of our running example.

p′e ,


if f7 = 1 then

id

else id

 ;



if f6 = 1 then

if f8 = 1 then id else

if f9 = 1 then id else

else drop

else f3 ← 1


;


if f5 = 1 then

x2 : ({dstip} ∪ fs , ∅)

else id

 ;


if f4 = 1 then

y2 : ({typ} ∪ fs , ∅)

else id


Two tasks remain to match the policy with the architecture model. First, predicates,

field modifications, and if statements—which are built into the virtual pipeline and

will not change at population time—must nevertheless be replaced by table variables,

105

as the RMT pipeline has no means of expressing such operations except for populating

its tables. A binding transformer will reinstate these policy fragments into the tables

at population time. Second, the table variables in the user policy must be fitted to

the table variables in the architecture model.

Both steps depend on a second compilation algorithm to compile a table-free user

policy to a single physical table; we use the algorithm presented in Section 4.1 for

compiling to the physical table format of RMT tables. For the remainder of this

section, we refer to this as single-table compilation:

single table :: Policy→ Policy

The resulting policy fits the shape of the matches; crossbar; actions table format de-

scribed in Figure 3.5.

Table insertion. At configuration time, the RMT switch consists solely of tables

arranged via sequential and concurrent composition. Non-table elements in the vir-

tual pipeline are fixed—i.e., they are constant regardless of whichever rules might be

installed into the virtual tables at population time. But fixed elements cannot be

installed directly on the switch at configuration time. Rather, they must be replaced

by table variables, and then reinstalled at population time by a binding transforma-

tion. As an example, we can replace our example egress pipeline p′e with the following

policy.

p′′e ,



t1 : ({f7} , ∅)

; t2 : ({f6, f8, f9} , {f3})

; t3 : ({f5, dstip, fs} , ∅)

; t4 : ({f4, typ, fs} , ∅)



106

The table insertion algorithm also produces a transformer θ to reinstate the original,

fixed policy fragments at population time.

θ ,



λb, z.

if z = t1 then


if f7 = 1 then

id

else id

 else

if z = t2 then



if f6 = 1 then

if f8 = 1 then id else

if f9 = 1 then id else

else drop

else f3 ← 1


else

if z = t3 then


if f5 = 1 then

(Tb x2)

else id

 else

if z = t4 then


if f4 = 1 then

(Tb y2)

else id

 else

Tb z



107

Definition 17 (Table insertion).

insert table :: Policy→ (Policy ×Θ)

insert table p; q = let p′, θp = insert table p in

let q′, θq = insert table q in

(p′; q′, θp ◦ θq)

insert table p || q = let p′, θp = insert table p in

let q′, θq = insert table q in

(p′ || q′, θp ◦ θq)

insert table p = (x : τ, (λb, w.

if w = x then single table (Tb p)

else Tb w))

After completing this step, the transformed user policy consists of table variables

and sequential and concurrent combinators. We don’t define a case for parallel compo-

sition, because any packet duplication is extracted as part of multicast consolidation,

and any remaining instances of the union operator must be within if statements—

which are treated as any other fixed element and replaced with a table.

Recovering concurrency. During multicast consolidation and field extrac-

tion, some instances of concurrent composition were replaced with sequential

composition—the egress stage, in particular, comprises a sequence of multicast-free

policies, some of which may be able to operate concurrently. The type system

indicates which instances of sequential composition can be replaced with concur-

rent composition: sequentially composed policies with non-overlapping write sets

and non-overlapping read/write sets. That is, consider again our table-fied egress

108

pipeline.

p′′e ,



t1 : ({f7} , ∅)

; t2 : ({f6, f8, f9} , {f3})

; t3 : ({f5, dstip, fs} , ∅)

; t4 : ({f4, typ, fs} , ∅)


Because none of these tables write to the same fields, nor do any write to a field

another might read, they can all be arranged concurrently rather than sequentially,

as per Lemma 5.

p′′′e ,



t1 : ({f7} , ∅)

∅||{f3} t2 : ({f6, f8, f9} , {f3})

{f3}||∅ t3 : ({f5, dstip, fs} , ∅)

∅||∅ t4 : ({f4, typ, fs} , ∅)


The compiler can recover concurrency by structurally traversing the compiled policy,

searching for and replacing amenable sequential combinators.

Table fitting. Single-table compilation comes with a cost—the number of rules in

the compiled table can grow exponentially with the number of sequential combinators

in the original policy. However, thanks to the concurrency inherent within physical

tables, the policy p || q does not incur any overhead when installed in a single table.

This leads to a choice. Suppose we have a policy (p; (q || r)) : τ that we would like

to compile to a sequence of two tables, (x1 : τ); (x2 : τ). Recall that concurrency

is commutative (Lemma 4) and equivalent to sequential composition (Lemma 5).

109

Hence, there are four ways we might compile this policy.

Compilation grouping Cost

(p); (q || r) (|p|) + (|q|+ |r|)

(p; q); (r) (|p| ∗ |q|) + (|r|)

(p; r); (q) (|p| ∗ |r|) + (|q|)

(p; q; r) (|p| ∗ |r| ∗ |q|)

In the first case, p is compiled to x1 and q || r to x2. The cost of p (written |p|) refers

to the number of TCAM or SRAM rows the compiled policy fills. The cost of placing

q and r in the same table is |q|+ |r|. In the next, the division is p; q and r, and here,

the cost of placing p and q in the same table is multiplicative in their sizes. Similarly,

p; r might be placed in x1 and q in x2 at the cost |p| ∗ |r| + |q|. Finally, the RMT

chip has the capability to join its physical stages together to emulate a single, larger

“logical stage.” That capability provides a final option, which is to compile p, q, and

r to a single table (paying the largest overhead of |p| ∗ |q| ∗ |r|). If p, q, and r are

of equal size, then the first option is most efficient. But when p is small and x1 has

space remaining, it may make sense to pay the cost of compiling p; q or p; r to x1.

The RMT “logical table” feature is suitable for cases in which p, q, or r are too large

to fit in a single physical table. The RMT chip has a limited number of bits a table

can match and the number of rules it can hold—each match stage has sixteen blocks

of 40b by 2048 entry TCAM memory and eight 80b by 1024 entry SRAM blocks—so

deciding how to partition a policy into tables matters.

Since there are many choices about how to fit a collection of tables, we have

defined a dynamic programming algorithm to search for the best one. The goal of

the algorithm is to fit a well-typed policy, without parallel composition, into as few

tables as possible.

110

Definition 18 (TCAM cost measurement).

table cost ∈ Var→ N

height x = table cost x

height p; q = height p ∗ height q

height p || q = height p+ height q

blocks p = d(width p)/40e ∗ d(height p)/2048e

As input, the algorithm relies on a user-supplied annotation estimating the max-

imum size of each user table at population time, written table cost x. We also rely

on several utility functions. The width of a policy (width p) returns the number of

bits it matches, while the height (height p) uses the user-supplied annotation to gauge

the number of entries that will ever be installed into the policy at population time.

Together, they calculate the number of TCAM blocks necessary to implement a pol-

icy (blocks p). Similar measurements exist for compiling to SRAM, but we focus on

TCAM here.

As input, the algorithm also takes a policy containing only sequences of tables.

The policy AST is a tree with combinators at the nodes and tables at the leaves. We

need to flatten this tree into the RMT pipeline. To do so, we must consider different

groupings of the tree’s fringe. For convenience, let tij represent an in-order numbering

of the leaves of the abstract syntax tree, starting with t11 as the leftmost leaf. For

example, given a policy (x : τx); (y : τy); (z : τz), then t23 would be (y : τy); (z : τz).

The algorithm proceeds by building a table m, where each cell m[i, j] holds the

smallest number of tables into which the sequence tij can fit. The crux of the algorithm

lies on line 10. Given a sequence tij for which the optimal fit for each subsequence

has been computed, either the entire sequence may be compiled to a single logical

table that can be deployed across dblocks tij/16e physical tables, or there exists a

partitioning tik, tkj where both subsequences fit into sets of tables, and so the entire

111

input : A sequence of t1n
input : table cost

1 let m[1 . . . n, 1 . . . n] and s[1 . . . n− 1, 2 . . . n] be new tables;
2 for i = 1 to n do
3 m[i, i] = d(blocks ti)/16e;
4 end
5 for l = 2 to n do
6 for i = 1 to n− l + 1 do
7 j = i+ l − 1;
8 m[i, j] =∞;
9 for k = i to j − 1 do

10 q = min(m[i, k] +m[k + 1, j], dblocks tij/16e);
11 if q < m[i, j] then
12 m[i, j] = q;
13 s[i, j] = k;

14 end

15 end

16 end

17 end
18 return m and s

Algorithm 1: Table fitting.

sequence fits into the sum of the size of the sets. The algorithm contains three nested

loops iterating over t1n, giving it a complexity on the order of O(n3), where n is size

of the policy AST’s fringe. The table s records the best partition chosen at each step,

from which we can reconstruct the sets of subsequences to compile to each table.

It remains to convert a user policy with concurrent and sequential composition

to one without concurrent composition. We apply a brute-force approach. For each

concurrent operator p || q, produce two sequences, p; q and q; p. Apply Algorithm 1

to each, and select the smallest result. There are on the order of O(2m) sequences,

where m is the number of concurrency operators, and so this final determinization

step runs in O(2mn3). Fortunately, in our experience, policies tend to have on the

order of tens of tables, although the tables themselves may hold many more rules.

112

4.2.5 Combining the Compilation Passes

To recap, we have four compilation stages. Multicast consolidation transforms an

initial virtual pipeline into a consolidation phase (with multicast) sequenced with

an egress pipeline (without multicast). If de-nesting simplifies nested if statements.

Field extraction takes a virtual pipeline without multicast and a field f to extract

and returns a modification stage (with modifications to the field f) sequenced with

an instrumented policy (without modifications to f). Finally, table fitting takes a

virtual policy without multicast, recovers any concurrency inherent in the pipeline,

replaces fixed pipeline fragments with tables, and fits the tables to the RMT pipeline

structure.

The stages are composed in this order: multicast consolidation, field extraction,

and then table fitting. Field extraction is applied to the egress pipeline built during

multicast consolidation, and if de-nesting is an optimization that can be applied after

each phase.

m,n, θ1 = pipeline s1 p id

e, n′, θ2 = extout s2 n id

At this point, we began with a policy p and now have an equivalent policy (mod-

ulo metadata) with a consolidation stage followed by a modification stage and an

instrumented egress pipeline.

p ≡ m; e;n′

And, as field extraction was applied to the egress pipeline produced by multicast con-

solidation, the transformers similarly compose (θ1 ◦θ2). Next, table fitting transforms

the egress pipeline n′ into the physical table format.

p ≡ m; e; Πiphysicali

113

It remains to put the consolidation and modification stages (m; e) into a form that

can be deployed to the multicast stage of the RMT pipeline.

Composing multicast consolidation with field extraction (on the out field) produces

two large summations m and e. Together, m and e represent all the ways an incoming

packet may be copied and assigned an output port. Our goal is to refactor m; e to

fit into the multicast stage in the RMT pipeline. Recall from Section 3.2 that the

multicast stage has the following form.

multicast =
∑
i

outi = i; ftag ← vi; out← i

Unfortunately, the multicast stage only matches on a specific set of metadata fields

(outi). The consolidation and modification stages may match any field, and so they

cannot fit into the multicast stage alone. Instead, we can transform m; e into three

new stages: one that sets the appropriate outi metadata to initiate packet duplication

(the setup stage), a second that checks the metadata, performs duplication, and sets a

unique tag on packet copies (the multicast stage), and a third that checks the packet

tag, sets the metadata introduced by the compiler, and applies tests from m and e to

filter any extra copies (the check stage).

The algorithm for combining m and e aligns especially closely with its proof of

correctness—both are guided by an application of the equational theory from Chap-

ter 2—and so we present them here together. First, let z as the policy fragment

that zeroes metadata. (The collections of metadata fields out and t will be explained

shortly.)

z = out← 0; out← 0; t← 0

114

We start with the consolidation and extraction stages sequenced, with metadata set

to zero before and after execution.

z;m; e; z

For now, suppose that neither stage contains a table variable. m and e expand as

follows.

≡ z; (
∑
i

ai; si); (
∑
j

bj;mj); z

By construction, each extraction stage contains a modification to the out field: mj ≡

m′j; out← vj. Substituting equals for equals, we have the following.

≡ z; (
∑
i

ai; si); (
∑
j

bj;m
′
j; out← vj); z

By the distributivity axiom Dist-L, summands with similar output port modifications

can be grouped.

≡ z; (
∑
i

ai; si); (
∑
k

(
∑
j

bj;m
′
j); out← vk); z

Also following the distributivity axioms Dist-L and Dist-R, the summation constitut-

ing m distributes to the right.

≡ z; (
∑

k(
∑

i ai; si); (
∑

j bj;m
′
j); out← vk); z

≡ z; (
∑

k(
∑

ij ai; si; bj;m
′
j); out← vk); z

By construction, neither m nor e use the collection of metadata fields out, and z

contains out ← 0. We will now make use of out, which is an n-bit metadata field

where n is the number of output ports. We write outi for the i-th bit of out. Following

the PA-Mod-Mod axiom, we can preface z with arbitrary modifications Πkoutk ← 1,

115

which then distribute left.

≡ z; (
∑
k

(Πkoutk ← 1); (
∑
ij

ai; si; bj;m
′
j); out← vk); z

Using PA-Mod-Filter and PA-Mod-Filter-Comm we can create a new test on outk in

each k summand.

≡ z; (
∑
k

(Πkoutk ← 1); outk = 1; (
∑
ij

ai; si; bj;m
′
j); out← vk); z

And, by Dist-L, the sequence of modifications to outk can be extracted to the left.

≡ z; (Πkoutk ← 1); (
∑
k

outk = 1; (
∑
ij

ai; si; bj;m
′
j); out← vk); z

At this point, we have extracted the setup stage p1 = (Πkoutk ← 1). The next step

is to form the multicast and check stages. Recall that the inner summation over

ij is grouped by common modifications to the out port; intuitively, each summand

represents a different copy that may be sent out the same port k. The metadata field

t will allow us to differentiate copies destined to the same port. t is n bits wide, where

n is the maximum number of packets that may be sent to the same output port.

Again by PA-Mod-Mod, we can create arbitrary modifications to t from z. And,

as t is fresh with respect to the rest of the policy, its modifications commute and

distribute left. We can use PA-Mod-Mod again to inject a unique modification to t

into each grouped summand.

≡ z; (Πkoutk ← 1); (
∑
k

outk = 1; (
∑
ij

t← vijk; ai; si; bj;m
′
j); out← vk); z

Next, note that out itself is a metadata field, and as such is initialized to zero. We can

use the specialize function of Definition 9 (along with Lemma 65) to resolve matches

116

on out in each ai and bj. Let a′i and b′j represent the specialized versions of ai and bj.

≡ z; (Πkoutk ← 1); (
∑
k

outk = 1; (
∑
ij

t← vijk; a
′
i; si; b

′
j;m

′
j); out← vk); z

Conveniently, specialization removes references to the field being specialized. Hence,

by Lemma 63, a′i and b′j commute with si, m
′
j, and out← vk, and so we can distribute

the out modification (eliminating the grouping) and move a′i; si; b
′
j;m

′
j to the end of

each summand.

≡ z; (Πkoutk ← 1); (
∑
ij

outk = 1; t← vijk; out← vk; a
′
i; si; b

′
j;m

′
j); z

The combination of t and out constitutes a unique tag for each packet duplicated in the

summation. It turns out that a single summation can be split into two summations,

provided that each summand in the original contains a unique tag (Lemma 74).

Hence, by PA-Mod-Filter and Lemma 74, we have the following.

≡ z; (Πkoutk ← 1);

(
∑

ij outk = 1; t← vijk; out← vk);

(
∑

ij t = vijk; out = vk; a
′
i; si; b

′
j;m

′
j); z

The second summation exactly matches the form of the RMT multicast stage.

The final summation quite nearly resembles an if statement; intuitively, each sum-

mand corresponds to a set of packets that will be handled by the same path through

the original policy; as such, the tests across summands do not intersect. By lifting

specializing of the field extraction tests in b′j to the modifications in s1 (Lemma 65),

117

we can group all the predicates together in each summand.

≡ z; (Πkoutk ← 1);

(
∑

ij outk = 1; t← vijk; out← vk);

(
∑

ij t = vijk; out = vk; a
′
i; b
′′
j ; si;m

′
j); z

And, following Lemma 75, the final summation can be replaced with an equivalent if

statement, forming the check stage.

≡ z; (Πkoutk ← 1);

(
∑

ij outk = 1; t← vijk; out← vk);

if t = 1; out = 1; a′1; b
′′
1 then s1;m

′
1 else

if t = 2; out = 1; a′1; b
′′
2 then s1;m

′
2 else

. . .

Of course, summands within the consolidation and extraction stages may contain

table variables. In that case, three new table variables are created, one each for the

setup, multicast, and check stages, and a θ transformer fills those tables at population

time by applying the transformation described above.

After combining the consolidation and extraction stages, we have the following

(omitting the metadata zeroing), where p1 is the setup stage and p3 the check stage.

m; e ≡ p1; multicast; p2

118

We can apply table fitting to p1 and p2;n
′ independently to fit them to the RMT

pipeline. Altogether, we have the following.

p ≡ m;n (multicast consolidation)

≡ m; e;n′ (field extraction)

≡ p1; multicast; p2;n
′ (merging consolidation and extraction stages)

≡ physical1; multicast; Πiphysicali (table fitting)

Optimality. The table fitting algorithm is optimal in the sense that it partitions a

virtual pipeline—restricted to virtual tables, composed sequentially or concurrently—

into the fewest number of physical tables. But compilation as a whole is not optimal.

The stages produced by multicast consolidation and field extraction may have equiv-

alent, syntactically smaller forms, as might the original virtual pipeline.

The equational theory has many axioms that equate policies of different syntactic

sizes, such as [KA-Dist-L], which relates a term with five sub-terms (p, q, r, sequenc-

ing, and union) with an equivalent term with seven sub-terms (in which p and the

sequencing operator appear twice). In principle, it may be possible to algorithmi-

cally determine the smallest equivalent policy; this would be an interesting avenue

for future work.

But even so, given a family of equivalent virtual pipelines, it’s not clear that the

virtual pipeline with the fewest terms will necessarily compile to the fewest tables.

Nor is it clear what optimizations, if any, might result in smaller consolidation, mod-

ification, and egress stages at compilation time. Chapter 7 discusses different kinds

of optimizations as future work.

119

Chapter 5

Implementation and Evaluation

We have implemented a prototype of the Concurrent NetCore language as an embed-

ded combinator library in OCaml, along with functions implementing the operational

semantics and pipeline compilation algorithms. Evaluating pipeline compilation on

two control applications—a learning switch and a stateful firewall—shows that while

overhead is non-negligible, pipeline compilation yields improvements over single-table

compilation.

5.1 Implementation

The policy language is represented by an abstract syntax tree using OCaml algebraic

data types. Packet trees are similarly embedded, and the operational semantics is

faithfully implemented as a function that steps a pair of a policy and packet tree. Each

of the syntactically-restricted stages associated with the compilation phases takes the

form of a unique data type, which each compilation phase builds while traversing the

policy abstract syntax tree.

Although this dissertation proves pipeline compilation correct, we nevertheless

implemented a regression test suite to aid development of the prototype, consisting

of sixty-five tests ranging from unit to system-wide coverage. Many of the tests take

120

the form of translation validation, where a policy is compiled and both the source and

compiled versions are evaluated against a set of input packets, checking for output

equivalence.

5.2 Evaluation Setup

To evaluate the CNC compilation algorithms, we implemented two simple applications

in CNC—a learning switch and a stateful firewall—and compared the overhead of

pipeline compilation to that of single-table compilation. In this setting, overhead is

measured as the syntactic size of the compiled policy compared to that of the original.

Learning switch. A learning switch learns the locations of new hosts as they join

the network. The controller accomplishes this by monitoring traffic sent from new

hosts; if a packet from an unrecognized MAC address arrives at a learning switch, it

sends a copy of the packet to the controller, which then updates the forwarding rules

on the switch to send traffic destined to that MAC address out the port on which

the traffic arrived. If the original packet is destined for a known address—i.e. one

that has previously sent traffic through the switch—it is forwarded to the appropriate

port; otherwise, it is dropped.

Intuitively, the switch performs two tasks simultaneously: monitoring traffic from

unknown hosts and forwarding traffic to known hosts. Hence, we can build a virtual

pipeline with two tables, one for monitoring, and another for forwarding.

learning , (mon : ({srcmac} , {out})) + (fwd : ({dstmac} , {out}))

Here, we model the act of sending the packet to the controller as forwarding the

packet out a special port, and so both tables potentially modify the out field. Notably,

the union operator allows for a more modular implementation: the monitoring and

121

forwarding policies can be developed independently, because each operates on its own

logical copy of the packet.

The monitoring policy initially sends all packets to the controller (on the special

port c), and the forwarding policy begins by dropping all traffic.

moninit , out← c

fwdinit , drop

Suppose a new host joins the network with MAC address 1. After the switch sees

its first packet, say on port 1, the controller updates the monitoring and forwarding

tables.

mon1 , if srcmac = 1 then drop else moninit

fwd1 , if dstmac = 1 then out← 1 else fwdinit

Both tables continue to grow as hosts join the network.

Stateful firewall. A stateful firewall separates trusted and untrusted hosts. Ini-

tially, the firewall blocks all traffic from untrusted hosts; but, after a trusted host

initiates a connection to an untrusted host, the firewall adds the remote host to a list

of safe external hosts, which are allowed to send traffic in the reverse direction.

As with the learning switch, a stateful firewall comprises two parts—a monitoring

element and a forwarding element—which we can implement using a virtual pipeline

with two tables joined by union. In this example, we assume that trusted hosts are

connected via port 1, and untrusted hosts via port 2.

firewall ,

in = 1; (mon : ({dstip} , {out})) +



if in = 1 then

out← 2

else

(fwd : ({srcip} , ∅)); out← 1


122

On the left, all traffic arriving from a trusted host may be monitored to detect new

flows to untrusted hosts, while on the right, all traffic from trusted hosts can be

forwarded to untrusted hosts, but traffic from untrusted hosts is first checked against

the set of allowed connections. The monitoring table initially sends all packets to the

controller, while the forwarding table drops all untrusted traffic.

moninit , out← c

fwdinit , drop

After a trusted host initiates a new connection, say from a source IP address of 1 to

an untrusted host with address 2, the tables are updated as follows.

mon0 , if dstip = 2 then drop else moninit

fwd0 , if srcip = 2 then id else fwdinit

Both tables continue to grow as trusted hosts initiate new connections.

Evaluation setup. Each benchmark is made up of a virtual pipeline and a ta-

ble binding that holds a population-time update. In order to compare the pipeline

compilation algorithms with single table compilation, we take two steps.

• We begin by installing the update to the virtual pipeline and measuring how

large the resulting policy would be if the entire populated virtual pipeline were

compiled to a single table. The RMT pipeline supports deploying a logical

table across many physical tables, and so this represents a straw-man solution:

compile complicated pipelines to a single table, and then spread that table

across the RMT pipeline.

• Next, we compile the virtual pipeline using the algorithms from Chapter 4,

using the size of the population-time update as the “size estimate” required

by the compiler. The output is a pipeline that matches the RMT model from

123

Section 3.2, along with a transformer. We then install the population-time

update into the compiled pipeline using the transformer and measure its size.

We scale the size of the population-time update with the number of network events—

new hosts, in the case of the learning switch, and new outbound connections for

the stateful firewall—and compare the sizes of the resulting policies syntactically,

counting the number of policy operators, which accounts for the number of rules as

well as the size of each rule.

The experiments were run on a Macbook Pro with a 2.6 GHz Intel Core i7 pro-

cessor, 16 GB 1600 MHz DDR3 RAM, running OS X 10.9.5. Each benchmark was

compiled to a native binary using OCaml version 4.02.1.

5.3 Evaluation Results

The results of our experiments are given in Figure 5.1, which compares the overhead

of pipeline compilation to that of single-table compilation, where pipeline compilation

consists of multicast consolidation, if statement de-nesting, field extraction of the out

field, and table fitting, targeting the RMT pipeline model.

Notably, pipeline compilation scales better than single-table compilation, despite

the additional machinery that makes pipeline compilation possible—this shows that

pipeline compilation is more efficient than compiling a policy into a single table and

spreading that table across the physical pipeline. But the evaluation also demon-

strates an unfavorable interaction between pipeline compilation phases, where multi-

cast consolidation introduces unnecessary work for field extraction. It also lays bare a

serious limitation in the scalability of the prototype implementation, due to problems

with memory allocation. The remainder of this section examines these points in more

detail.

124

Figure 5.1: The size of compiled virtual pipelines filled with a compiled population-
time update. Size measures the number of operators in the policy.

Interaction between compilation phases. Figure 5.2 shows a more detailed

breakdown of the learning switch benchmark. The X-axis indicates the number of

new hosts that have sent traffic through the learning switch, and the Y-axis is the

syntactic size of the policy in logarithmic scale. The lightest line (labeled “input”),

closest to the bottom, shows the size of the virtual policy and the population-time

update generated by the network events, as described in Section 5.2—it grows linearly

with the number of network events. The line above it corresponds to the size of the

policy emitted after multicast consolidation (labeled “MC” in the legend). Because

the virtual pipeline only contains one instance of multicast, the overhead is minimal.

But the multicast consolidation stage rearranges the policy into a pipeline format.

The field extraction stage, which moves modifications to the out field earlier in the

125

Figure 5.2: The size of compiled virtual pipelines filled with a compiled population-
time update. Size measures the number of operators in the policy.

pipeline, traverses the pipeline back-to-front. Because the pipeline is longer, field

extraction must consider more interactions between earlier and later stages of the

pipeline, yielding a larger extraction stage. However, there is no interaction between

different pieces of the egress pipeline produced by multicast consolidation—the crux

of that phase lies in ensuring that different packet copies are processed by different

pieces of the pipeline. And so the field extraction stage produces a policy much

larger than necessary, as evinced by the smallest dashed line in Figure 5.2, labeled

“FE” in the legend—the output of field extraction is larger even than single table

compilation. But combining the consolidation and extraction stages eliminates the

spurious interactions introduced in field extraction and results in a much smaller

output policy (labeled “output” in the legend).

126

Figure 5.3: The size of compiled virtual pipelines filled with a compiled population-
time update. Size measures the number of operators in the policy.

Figure 5.3 shows a similar breakdown for the stateful firewall benchmark. In this

case, the size of the field extraction stage is much smaller—still larger than the output

policy, but much smaller than the size of single-table compilation. The difference lies

in the structure of the firewall table, which drops packets or leaves them unchanged,

rather than choosing an output port. As such, field extraction is much simplified,

and although the same interference occurs with the multicast consolidation phase,

the size of the extraction stage is small enough for the impact to be negligible.

Limitations of the prototype. One might wonder why policy sizes are reported

in terms of syntactic size rather than, say, the number of physical tables required to

hold them. The current prototype directly implements the algorithms described in

this dissertation, with little attempt to promote tail recursion, limit data structure

127

Figure 5.4: The wall-clock time required for compiling a virtual policy and population-
time update.

traversals, or curtail the number of objects produced. As such, the OCaml implemen-

tation suffers from poor memory performance, running out of memory on examples

large enough to fully exercise the physical pipeline, and spending a significant amount

of time to compile even smaller examples. Figures 5.4 and 5.5 report the wall-clock

time for the pipeline compilation of both benchmarks. Notably, the compilation time

of the stateful firewall is much lower than that of the learning switch, which indicates

that the problem lies in field extraction and combining the results of field extraction

and multicast consolidation.

Figure 5.61 shows the memory performance of pipeline compilation on the learning

switch benchmark with twenty network events. The X-axis shows the time elapsed

since execution began, and the Y-axis shows the amount of memory allocated. The

solid regions correspond to cumulative live words in the heap, with the vast majority

coming from CNC policy data structures. The dashed line shows all the words allo-

1This graph was generated by the TypeRex OCaml Memory Profiler.

128

Figure 5.5: The wall-clock time required for compiling a virtual policy and population-
time update.

Memory Proöle of Pipeline Compilation on the Learning Switch Benchmark

Figure 5.6: The memory performance of pipeline compilation on the learning switch
benchmark with twenty network events.

129

cated on the heap—live or not—and the vertical lines represent compactions by the

garbage collector.

There are two things particularly noteworthy about this chart. First, at this num-

ber of network events, the size of the input policy is roughly forty rules, corresponding

to a policy abstract syntax tree with roughly one hundred twenty nodes, and the size

of the output policy is just over twelve hundred nodes. But the amount of live mem-

ory repeatedly peaks close to nine megabytes, which is vastly larger than the final

size of the policy. Even the intermediate result of the field extraction stage is only on

the order of eight thousand nodes. Hence, there is room for substantial improvement

in the memory performance of the prototype.

A second point stems from the behavior of memory use over time. In particular,

memory use spikes not three times, which one might expect to correspond to the

compiler phases, but five times instead. This indicates unnecessary work performed

during compilation, such as taking multiple passes over the policy data structure

where one would suffice.

Concluding remarks regarding the evaluation. Fortunately, the issues con-

tributing to the performance of the prototype are not insurmountable. The interfer-

ence between multicast consolidation and field extraction is not fundamental; it can

likely be solved by merging the two passes, giving field extraction additional informa-

tion about feasible paths through the egress pipeline. And we expect that additional

memory and run-time profiling will lead to tangible performance improvements in the

prototype. The final result then points to compilation as a viable means of automat-

ically deploying higher-level virtual pipelines to switches that support reconfigurable,

multi-table pipelines.

130

Chapter 6

Related Work

The NetKAT and Concurrent NetCore languages, pipeline models, and compilation

techniques are inspired by and share some common characteristics with work in both

the programming languages and networking communities.

6.1 NetKAT

Kleene algebra is named for its inventor, Stephen Cole Kleene. Much of the basic al-

gebraic theory of KA was developed by John Horton Conway [9]. Kleene algebra with

tests was introduced by Kozen [25, 26]. KA and KAT have been successfully applied

in many practical verification tasks, including verification of compiler optimizations

[28], pointer analysis [36], concurrency control [8], and device drivers [27]. This is

the first time KA has been used as a network programming language or applied to

verification of networks.

As a programming language, NetKAT is most similar to NetCore [37] and

Pyretic [38], which both stemmed from earlier work on Frenetic [11]. NetCore

defined the fragment of NetKAT that included parallel composition and Pyretic

extended NetCore with sequential composition, although Pyretic did not include

a compiler for deploying policies to SDN-enabled switches; rather, Pyretic routed

131

all traffic through the controller. Neither system defined an equational theory for

reasoning about programs, nor did it include Kleene star—unlike these previous

languages, NetKAT programs can describe potentially infinite behaviors.

NDLog [32] is a logic programming language with an explicit notion of location

and a distributed execution model. In contrast to NDLog, NetKAT and NetCore

are designed for programming centralized (not distributed) SDN controllers. Because

NDLog is based around Datalog (with general recursion and pragmatic extensions

that complicate its semantics), equivalence of NDLog programs is undecidable [47].

NetKAT’s Kleene star is able to model network behavior, but has decidable (pspace-

complete) equivalence.

Several other research groups have proposed domain-specific SDN programming

languages [40, 13, 52, 54, 10]. While these network programming languages allow

programmers to specify the behavior of each switch using high-level abstractions that

a compiler translates to low-level instructions for the underlying hardware, they lack

an equational theory, and they do not target switches with reconfigurable pipelines.

6.2 Concurrent NetCore

Concurrent NetCore shares a common core with NetCore [37] and NetKAT [2], but

adds table specifications, concurrency, and a type system. These additions require a

new approach to the semantics—the denotational techniques used for NetCore and

NetKAT do not extend easily to models of concurrency. Moreover, these new features

make it possible to express controller requirements as well as next generation switch

hardware features. We have focused on specifying the properties of individual switches

here, so Kleene star is unnecessary, but it would be interesting to investigate adding

it in the future to facilitate reasoning about networks of multi-table switches.

132

Types. The type system introduced in Concurrent NetCore is akin to a type and

effect system in the style of the Tofte-Talpin system [50], with some similarities to the

FX language [12] and Deterministic Parallel Java [4]. The types in CNC describe not

only the values produced but also characteristics of the computations that produce

them—in this case, the fields read and written—and the annotations on the CNC

concurrency operator describe an effect: how the fields of a packet should be allocated

to the concurrently operating sub-policies. Like Tofte and Talpin, we use the type

system to prove that the system behaves at run time. In their TT language, which

supports region-based memory management, they prove a correctness property that

accounts for memory safety. In our case, we prove that CNC is strongly normalizing

and free of race conditions. And, as with the FX language and Deterministic Parallel

Java, we rely on effects to characterize the interactions between concurrent operations.

However, CNC is a domain-specific language designed to target network switches.

As such, it lacks many features found in the languages associated with other type and

effect systems, including functions (higher-order or otherwise), loops, memory alloca-

tion, or even the ability to assign expressions to variables (CNC supports assigning

constants to fields). Nor do we present an effect inference algorithm for reconstruct-

ing the type annotations for concurrent operators, although doing so—in our case—is

straightforward.

Concurrency and abstract algebra. Hoare et al. define a family of algebras

with operators for both sequential and concurrent composition, which they refer to

collectively under the common heading concurrent Kleene algebra (CKA) [16]. Their

development is quite general, with the intention of capturing fundamental properties

of program execution that hold even in concurrent architectures with weak memory

models, distributed systems with unreliable communication, and in the presence of

aggressive program optimizations. Ultimately, they show that CKAs retain suffi-

133

cient expressive power to encode the sequential and concurrent assertional reasoning

techniques of Hoare logic [15] and Jones’s rely/guarantee calculus [19].

As such, the technical developments in support of CKAs are quite different from

those of NetKAT and Concurrent NetCore. For example, Hoare et al. define a trace-

based denotational semantics to illustrate four operators: sequential composition,

alternation, disjoint parallel composition, and fine-grained concurrent composition.

In this semantics, a trace is defined as a set of abstract events drawn from a universe

EV coupled with a dependence relation → ⊆ EV ×EV that can be used to induce

an event ordering: e → f if data or control flow from event e to event f . Trace

independence (written tp 6← tq) indicates that no event in trace tq depends on an

event in trace tp. Programs are defined as sets of traces, and the semantics of each

operator is defined as follows.

concurrent composition tp(∗)tq ⇐⇒ df tp ∩ tq = ∅

sequential composition tp(;)tq ⇐⇒ df tp(∗)tq ∧ tp 6← tq

parallel composition tp(||)tq ⇐⇒ df tp(;)tq ∧ tq 6← tp

alternation tp([])tq ⇐⇒ df tp = ∅ ∨ tq = ∅

In contrast, the behavior of a CNC pipeline is described with a small-step op-

erational semantics, which more closely reflects the computational steps of physical

switching hardware. That being said, a similar trace-based semantics can likely model

the behavior of CNC pipelines, with each trace corresponding to one packet produced

by the pipeline. In such a setting, “events” would be field tests and modifications.

Concurrent and sequential composition would be defined as in the model of Hoare et

al., but CNC union (the + operator) would replace alternation to produce a set of two

traces, rather than one or the other. Finally, although CNC does not have an oper-

ation that directly corresponds with what Hoare et al. call parallel composition, our

goal would be to produce a correctness result showing that in well-typed CNC pro-

134

grams, concurrent composition behaves like their parallel composition, in that there is

no potential for fine-grained interleaving with different orderings of dependent events.

As an aside, it is worth noting that the NetKAT/CNC interpretation of “alter-

ation” as “copying union” composition is quite different than that of CKA (as well as

other interpretations of Kleene algebra that we are aware of). Typically, “alteration”

indicates a form of nondeterminism, wherein one of two behaviors may occur, but

not both. “Copying union,” on the other hand, implies that both behaviors occur

simultaneously, but on different copies of a given data packet. Despite the difference,

this interpretation still satisfies the KAT equations.

Concurrent Kleene algebra also contains an “exchange” axiom that characterizes

the relationship between concurrent and sequential composition as follows.

(P ∗R); (Q ∗ S) ⊆ (P ;Q) ∗ (R;S)

Here, P,Q,R, and S are programs, and the subset relation compares traces generated

by these programs. Intuitively, the program on the right includes more traces, because

all of P ;Q may interleave with all of R;S. The exchange axiom reflects similar

reasoning to Lemma 5, which describes the conditions in CNC under which p; q ≡

p || q. Suppose (p || r); (q || s) is well typed. Using this lemma, we can see that the

following CNC equivalence holds only in certain cases.

(p || r); (q || s) ≡ (p; q) || (r; s)

In particular, the following additional conditions are necessary. Suppose, as part of

our earlier assumption (that the left-hand side of the equivalence is well typed), that

135

the following sub-derivations are part of that typing derivation.

Γ ` p : (Rp,Wp)

Γ ` q : (Rq,Wq)

Γ ` r : (Rr,Wr)

Γ ` s : (Rs,Ws)

In that case, the following conditions are needed to show that the equivalence holds.

Rp ∩Ws = Rs ∩Wp = Wp ∩Ws = ∅

Rq ∩Wr = Rr ∩Wq = Wq ∩Wr = ∅

Under these conditions, we can apply Lemma 5 and Lemma 4 (concurrency commutes)
to effect the following transformation.

Assertion Reasoning

(p || r); (q || s)
≡ p; r; q; s Lemma 5.
≡ p; (r || q); s Lemma 5.
≡ p; (q || r); s Lemma 4.
≡ p; q; r; s Lemma 5.
≡ (p; q) || (r; s) Lemma 5.

The reverse, however, is not the case. That is, if (p; q) || (r; s) is well typed, then we

can derive (p || r); (q || s) with no additional constraints.

The remaining algebraic developments surrounding CKA—the encoding of Hoare

logic and rely/guarantee-style reasoning—may hold for CNC as well, but further

investigation is needed to establish the relationship formally.

Next-generation switch programming languages. Bossart et al. [5] propose

an architecture for programming “OpenFlow 2.0” switches, which we follow in this

dissertation. Bossart’s configuration language includes components for programming

the packet parser as well as the match-action packet processing. We focus on just

136

the match-action processing here, but provide a formal semantics and metatheoretic

analysis of our work, whereas they provide no semantics. We also consider concurrent

and parallel composition, which they do not. Another important inspiration is the

ONF’s ongoing work on typed table patterns [1].

6.3 Compilation

The single-table compilation algorithm expands on the NetCore compilation algo-

rithm targeting OpenFlow 1.0 tables [37] by adding compilation for sequential com-

position. Guha et al. [13] develop a machine-verified controller, which includes a

proved correct implementation of the NetCore compilation algorithm, although they

use semantic rather than syntactic proofs.

Just as parts of the CNC language overlap with the P4 language [5], so do parts

of pipeline compilation. In particular, the P4 language begins without concurrent or

parallel composition, and so has no need for multicast consolidation, nor an immediate

need for field extraction; rather, compilation focus on table fitting. Jose et al. [20]

identify four types of program dependence in P4 programs, akin to the read-after-

write, write-after-read, write-after-write, and control dependences standard in the

compilers literature. Jose et al. use these dependences to specify ordering constraints

on virtual tables in an integer linear program, the output of which maps a virtual

pipeline into a physical pipeline. While they do not develop a semantics or justify

the correctness of the reordering operations, those operations appear similar to the

type-based reasoning we present in Chapter 3 for justifying the commutativity and

sequentialization of the concurrency operator (Lemmas 4 and 5). Nor do Jose et. al

attempt to break dependences by setting metadata fields, a technique we employ in

both multicast consolidation and field extraction. It would be interesting to combine

these approaches in the future. Both the table fitting algorithm of Section 4.2.4 the

137

integer linear programming approach of Jose et al. take exponential time in the worst

case, although Jose et al. also present greedy approximations. Additional experiments

are needed to compare these approaches in practice.

138

Chapter 7

Summary and Future Work

This dissertation introduces a language for programming networking hardware with

reconfigurable packet-processing pipelines. We began by establishing a connection

between a packet-processing language and abstract algebra, which gives rise to a

sound and complete equational theory. Next, we showed how to extend the language

with a type system and support for tables and concurrency, which mirror packet

processing pipelines in emerging switch architectures. Using the extended language,

we showed how to model the pipelines of three switch architectures, define a virtual

pipeline independent of any one physical architecture, and compile from one to the

other. We also studied the formal properties of the extended language, establishing a

strong normalization result and a sound (but not complete) equational theory, which

we used to prove the compilation algorithms correct.

Reconfigurable pipelines are still emerging as a means of flexibly controlling a

network of switches, and there are several areas where the results in this dissertation

can be extended to expose and exploit more sophisticated hardware features, add

more powerful abstractions, and integrate with a more robust, optimization-focused

compiler architecture. The remainder of this chapter discusses these avenues for

future research.

139

7.1 Building A Language of Actions

The RMT [6] and FlexPipe [42] architectures both support actions beyond field mod-

ification and packet duplication, such as building simple arithmetic expressions over

field values and built-in hash functions, assigning expressions to fields, adding and

removing fields, and more. Some actions, like packet duplication, are invoked by

writing predefined values to particular metadata fields, while others are built into

the interfaces for configuring the pipeline, as with field modification. CNC includes

operators for both field modification and packet duplication, both of which are given

a concrete semantics and play a role in developing the equational theory.

It would be interesting to investigate general properties of actions, with an eye

toward extending the CNC language and equational theory with abstract “action”

operations. For example, perhaps knowing the fields an action reads and writes

will be sufficient to reason about program transformations; this seems reasonable for

arithmetic and hash functions. Something like encryption, on the other hand, may

require additional reasoning principles to account for the fact that other operations

(like arithmetic) cannot be applied to a field after it has been encrypted. Other ap-

proaches may include developing a sub-language of actions to embed within CNC,

such as the language of arithmetic expressions, or adding first-class language con-

structs to CNC, such as variable binding and scoping to model adding and removing

fields from the packet.

7.2 Adopting Traditional Compilation Techniques

Many features and operations within a switch pipeline bear striking resemblance

to aspects of traditional Von Neumann architectures. For example, packets can be

thought of as heaps with named locations—dstip rather than 0xdeadbeef—and the

pipeline policy is evaluated with respect to each packet; reads and writes to packet

140

fields act just as reads and writes to the heap. Likewise, metadata fields are akin

to registers: the hardware supports a predetermined, fixed set, some of which are

subject to special, hardware-specific interpretation.

Compilation techniques from traditional software systems may also apply to the

compilation of packet-processing programs. Several compilation techniques in this

dissertation introduce the use of metadata fields; one might use techniques drawn

from register allocation to minimize the number of metadata fields required. Dead

code elimination would certainly be useful, given that the memory in switch pipelines

is scarce. And in a setting with Kleene star, loop unrolling might be a reasonable

transformation to enable other forms of optimization. It would be interesting to inves-

tigate adopting these and other compilation techniques, but also to explore whether

a more formal, fundamental connection exists.

7.3 Coordinating Optimizations

Finally, the move toward reconfigurable pipelines in software-defined networks intro-

duces new opportunities for more sophisticated forms of optimization. In this setting,

where table space is a scarce commodity, there are three mechanisms one might use

to maximize the amount of table space available and minimize the size of policies

installed at population time. First, the pipeline configuration itself can optimize the

available rule space for a given class of population-time policies, as we saw in Chap-

ter 4 of this dissertation. Second, at population time, the rules destined for a single

table can be transformed into semantically equivalent but syntactically fewer rules,

in the style of TCAM optimization [31]. Finally, population-time policies can be

refactored and split across multiple tables [21, 35]. And from the perspective of rule

placement optimizations, there is little difference between a pipeline of tables and a

network of switches; in principle, optimizations for one should apply to the other.

141

In traditional software systems, deciding how best to compose compiler

optimizations—called the phase ordering problem—is known to be challeng-

ing [51, 55, 29, 30]. Some optimizations enable others, while some cause interference,

and predicting the interaction is difficult. It would be interesting to consider the

interactions between table configuration, single-table optimization, and multi-table

optimization, perhaps drawing from the literature on the phase ordering problem to

better coordinate enabling CNC policy optimizations.

Other run-time activities also interact with table configuration and rule optimiza-

tions. As an example, consider rule caching, where the controller manages a set of

population-time policies that are too large to fit in the available pipeline memory

by deploying the most popular rules to the pipeline (for low-latency/high-throughput

handling) and diverting “missed” packets—those not handled by the cached rules—to

the controller (for higher-latency/lower-throughput handling) [22]. Just as some op-

timizations may enable other optimizations, so too might some optimizations enable

more efficient caching algorithms. Other activities, like guaranteeing consistent up-

dates [43] or managing federated network control [18], may benefit from coordinated

optimizations as well.

142

Appendix A

Correctness of the Isolation

Algorithm

This section contains the full proofs and supporting lemmas for theorems in Sec-

tion 2.3.

As Figure A.1 shows, the desugared translation of slice policies relies heavily on

predicates on worlds, which we have written vlan = w. For the rest of this section, we

will sometimes abbreviate this as simply w. Hence, a policy written w; p is equivalent

to vlan = w; p. We also rely on a denesting lemma, drawn from [24], that shows how

to transform a summation under a star into a series of conjunctions and stars.

Lemma 9 (Denesting).

p*(qp*)* ≡ (p+ q)*

Proof. Proposition 7 in [24].

L{in} w : (p) {out}Mw0 ::=
let pre = (vlan = w0; in; vlan← w + vlan = w) in
let post = (out; vlan← w0 + ¬out) in
pre; p; post

Figure A.1: Slice desugaring.

143

Slice policies and predicates must be tag-free. Intuitively, tag-freedom asserts that

policies and predicates neither test nor modify the tag field. Formally, we use the

following definitions.

Definition 19 (tag-free Policy). A policy p is tag-free when it commutes with any

test of the slice field:

For all w, tag = w; p ≡ p; tag = w.

Definition 20 (tag-free Predicate). A predicate b is tag-free when it commutes with

any modification of the tag field:

For all w, tag← w; b ≡ b; tag← w.

Unsurprisingly, certain commutativity properties also hold on the topology. In

particular, the topology may only modify the location information associated with

each packet but not the packet itself. Hence, any tests on the packet commute with

the topology.

Lemma 10 (Topology Preserves Packets). For all topologies t and predicates b, if b

does not include tests of the form sw = v for any value v, then b; t ≡ t; b.

Proof. By induction on the structure of t. The base case follows immediately from

KA-Seq-Zero. The inductive case is t = sw = sw ; pt = pt ; sw← sw ′; pt← pt ′ + t′.

Assertion Reasoning

b; (sw = sw ; pt = pt ; sw← sw ′; pt← pt ′ + t′)
≡ b; sw = sw ; pt = pt ; sw← sw ′; pt← pt ′ + b; t′ KA-Seq-Dist-L.
≡ sw = sw ; pt = pt ; b; sw← sw ′; pt← pt ′ + b; t′ BA-Seq-Comm.
≡ sw = sw ; pt = pt ; sw← sw ′; pt← pt ′; b+ b; t′ KA-Match

PA-Mod-Mod-Comm.
≡ sw = sw ; pt = pt ; sw← sw ′; pt← pt ′; b+ t′; b IH.
≡ (sw = sw ; pt = pt ; sw← sw ′; pt← pt ′; +t′); b KA-Seq-Dist-R.

144

Suppose there exist two slices. The first only emits packets that, after traversing

the topology, do not match the ingress predicate of the second. A sequence composed

of the first slice, the topology, and the second slice is equivalent to drop.

Lemma 11 (No Slice Sequencing). For all slice ingress and egress predicates

in1, out1, in2, out2, slice identifiers w1, w2, and policies s1, s2, p, q, and topologies t,

such that

• s1 ≡ L{in1} w1 : (p) {out1}Mw0,

• s2 ≡ L{in2} w2 : (q) {out2}Mw0,

• H0: w1 6= w2,

• H1: p, q, in1, in2, out1, out2 are all VLAN-free.

• H2: out1; t; dup; in2 ≡ drop,

then the following equivalence holds:

s1; t; dup; s2 ≡ drop

145

Proof. First, note that s1 and s2 have the following desugared forms.

pre1 = (w0; in1; vlan← w1 + w1)

post1 = (out1; vlan← w0 + ¬out1)

s1 = pre1; p; post1

= (w0; in1; vlan← w1 + w1); p; (out1; vlan← w0 + ¬out1)

pre2 = (w0; in2; vlan← w2 + w2)

post2 = (out2; vlan← w0 + ¬out2)

s2 = pre2; q; post2

= (w0; in2; vlan← w2 + w2); q; (out2; vlan← w0 + ¬out2)

Assertion Reasoning

s1; t; dup; s2
≡ pre1; p; post1; t; dup; pre2; q; post2 Substitution for

s1 and s2.
≡ pre1; p; (out1; vlan← w0 + ¬out1); t; dup; pre2; q; post2 Substitution for

post1.
≡ (w0; in1; vlan← w1 + w1); p; (out1; vlan← w0 + ¬out1);

t; dup; pre2; q; post2 Substitution for pre1.
≡ (w0; in1; vlan← w1 + id);w1; p; (out1; vlan← w0 + ¬out1);

t; dup; pre2; q; post2 PA-Mod-Filter
and KA-Seq-Dist-R.

≡ (w0; in1; vlan← w1 + w1);w1; p; (out1; vlan← w0 + ¬out1);
t; dup; pre2; q; post2 BA-Seq-Idem,

PA-Mod-Filter,
and KA-Seq-Dist-R.

≡ pre1;w1; p; (out1; vlan← w0 + ¬out1); t; dup; pre2; q; post2 Substitution for pre1.
≡ pre1; p;w1; (out1; vlan← w0 + ¬out1); t; dup; pre2; q; post2 H1.
≡ pre1; p;w1; out1; vlan← w0; t; dup; pre2; q; post2

+pre1; p;w1;¬out1; t; dup; pre2; q; post2 KA-Seq-Dist-L.
≡ pre1; p;w1; vlan← w0; out1; t; dup; pre2; q; post2

+pre1; p;w1;¬out1; t; dup; pre2; q; post2 H1.
≡ pre1; p;w1; vlan← w0;w0; out1; t; dup; pre2; q; post2

+pre1; p;w1;¬out1; t; dup; pre2; q; post2 PA-Mod-Filter.
≡ pre1; p;w1; vlan← w0;w0; out1; t; dup;

(w0; in2; vlan← w2 + w2); q; post2
+pre1; p;w1;¬out1; t; dup; pre2; q; post2 Substitution for pre2.

146

≡ pre1; p;w1; vlan← w0;
(w0; out1; t; dup;w0; in2; vlan← w2 + w0; out1; t; dup;w2);
q; post2
+pre1; p;w1;¬out1; t; dup; pre2; q; post2 KA-Seq-Dist-L.

≡ pre1; p;w1; vlan← w0;
(w0; out1; t; dup;w0; in2; vlan← w2 + drop); q; post2
+pre1; p;w1;¬out1; t; dup; pre2; q; post2 H1, Lemma 10,

and PA-Contra.
≡ pre1; p;w1; vlan← w0;

(w0; out1; t; dup; in2;w0; vlan← w2 + drop); q; post2
+pre1; p;w1;¬out1; t; dup; pre2; q; post2 BA-Seq-Comm.

≡ pre1; p;w1; vlan← w0;
(w0; drop; vlan← w2 + drop); q; post2
+pre1; p;w1;¬out1; t; dup; pre2; q; post2 H2.

≡ pre1; p;w1;¬out1; t; dup; pre2; q; post2 KA-Seq-Zero,
KA-Zero-Seq,
and KA-Plus-Zero.

≡ pre1; p;¬out1; t; dup;w1; pre2; q; post2 H1 and Lemma 10.
≡ pre1; p;¬out1; t; dup;w1;

(w0; in2; vlan← w2 + w2); q; post2 Substitution for pre2.
≡ pre1; p;¬out1; t; dup;

(w1;w0; in2; vlan← w2 + w1;w2); q; post2 KA-Seq-Dist-L.
≡ drop PA-Contra,

KA-Seq-Zero,
KA-Zero-Seq,
and Plus-Zero.

Now, suppose there are two slices that neither admit the same packets nor does

one eject any packets the other may inject. Every packet that enters the network will

either be admitted to the first slice, or the second, or dropped. Intuitively, if the two

slices are indeed isolated, then if we restrict the packets that enter the network to

only those that will be injected into the first slice, then running both slices together

should be equivalent to running the first slice alone.

Theorem 5 (Slice/Slice Isolation). For all slice ingress and egress predicates

in1, out1, in2, out2, slice identifiers w1, w2, and policies s1, s2, p, q, and topologies t,

such that

• s1 ≡ L{in1} w1 : (p) {out1}Mw0,

• s2 ≡ L{in2} w2 : (q) {out2}Mw0,

147

• H0: w1 6= w2,

• H1: p, q, in1, in2, out1, out2 are all VLAN-free.

• H2: in1; in2 ≡ drop,

• H3: out1; t; dup; in2 ≡ drop,

• H4: out2; t; dup; in1 ≡ drop,

• H5: out1; out2 ≡ drop,

then the following equality holds:

w0; in1; (s1; t; dup)* ≡ w0; in1; ((s1 + s2); t; dup)*

Proof. First, note that s1 and s2 have the following desugared forms.

pre1 = (w0; in1; vlan← w1 + w1)

post1 = (out1; vlan← w0 + ¬out1)

s1 = pre1; p; post1

= (w0; in1; vlan← w1 + w1); p; (out1; vlan← w0 + ¬out1)

pre2 = (w0; in2; vlan← w2 + w2)

post2 = (out2; vlan← w0 + ¬out2)

s2 = pre2; q; post2

= (w0; in2; vlan← w2 + w2); q; (out2; vlan← w0 + ¬out2)

Next, note that the following equivalence holds, which we will call L1: in1;w0; s2 ≡

drop.

Assertion Reasoning

148

L1 in1;w0; s2
≡ in1;w0; pre2; q; post2 Substitution for s2.
≡ in1;w0; (w0; in2; vlan← w2 + w2); q; post2 Substitution for pre2.
≡ (in1;w0;w0; in2; vlan← w2 + in1;w0;w2); q; post2 KA-Seq-Dist-L.
≡ (in1;w0;w0; in2; vlan← w2 + drop); q; post2 PA-Contra and

KA-Seq-Zero.
≡ in1;w0;w0; in2; vlan← w2; q; post2 KA-Plus-Zero.
≡ in1; in2;w0;w0; vlan← w2; q; post2 BA-Seq-Comm.
≡ drop;w0;w0; vlan← w2; q; post2 H2.
≡ drop KA-Zero-Seq.

With L1, we can now show that w0; in1; (s1; t; dup)* ≡ w0; in1; (s1 + s2; t; dup)*.

Assertion Reasoning

w0; in1; ((s1 + s2); t; dup)*

≡ in1;w0; ((s1 + s2); t; dup)* BA-Seq-Comm
≡ in1;w0; (s1; t+ s2; t; dup)* KA-Seq-Dist-R.
≡ in1;w0; (s1; t; dup)*; (s2; t; dup; (s1; t; dup)*)* Lemma 9.
≡ in1;w0; (id + (s1; t; dup)*; (s1; t; dup));

(s2; t; dup; (s1; t; dup)*)* KA-Star-Unroll-R.
≡ in1;w0; (s2; t; dup; (s1; t; dup)*)*

+in1;w0; (s1; t; dup)*; (s1; t; dup);
(s2; t; dup; (s1; t; dup)*)* KA-Seq-Dist-L,

KA-Seq-Dist-R,
and KA-Seq-One.

≡ in1;w0; (id + (s2; t; dup; (s1; t; dup)*);
(s2; t; dup; (s1; t; dup)*)*)
+in1;w0; (s1; t; dup)*; (s1; t; dup); (s2; t; dup; (s1; t; dup)*)* KA-Star-Unroll-L.

≡ in1;w0 + in1;w0; (s2; t; dup; (s1; t; dup)*);
(s2; t; dup; (s1; t; dup)*)*)
+in1;w0; (s1; t; dup)*; (s1; t; dup); (s2; t; dup; (s1; t; dup)*)* KA-Seq-Dist-R.

≡ in1;w0 + in1;w0; (s1; t; dup)*; (s1; t; dup);
(s2; t; dup; (s1; t; dup)*)* L1 and KA-Plus-Zero.

≡ in1;w0 + in1;w0; (s1; t; dup)*; (s1; t; dup);
(id + (s2; t; dup; (s1; t; dup)*); (s2; t; dup; (s1; t; dup)*)* KA-Star-Unroll-L.

≡ in1;w0 + in1;w0; (s1; t; dup)*; (s1; t; dup)
+in1;w0; (s1; t; dup)*; (s1; t; dup); s2; t; dup; (s1; t; dup)*;
(s2; t; dup; (s1; t; dup)*)* KA-Seq-Dist-L.

≡ in1;w0 + in1;w0; (s1; t; dup)*; (s1; t; dup)
+in1;w0; (s1; t; dup)*; drop;
t; dup; (s1; t; dup)*; (s2; t; dup; (s1; t; dup)*)* Lemma 11.

≡ in1;w0 + in1;w0; (s1; t; dup)*; (s1; t; dup) KA-Seq-Zero
and KA-Zero-Seq.

≡ in1;w0; (id + (s1; t; dup)*; (s1; t; dup)) KA-Seq-Dist-L.
≡ in1;w0; (s1; t; dup)* KA-Star-Unroll-R.

149

≡ w0; in1; (s1; t; dup)* BA-Seq-Comm.

Shared inbound edges. In the previous section, we showed that two slices with

unshared edges are isolated when composed. Next, we relax the restriction on slice

edges: given two slices, s1 and s2, the ingresses of the two slices may overlap, and so

may the egresses. Intuitively, this captures the case where a packet may be copied

and processed by both slices simultaneously. Clearly the behavior of the slices, when

composed, is not equivalent to one of the slices acting alone; but neither can one slice

interfere with the copy of the packet traversing the other slice.

Theorem 6 (Slice/Slice Composition). For all tag-free slice ingress and egress pred-

icates in1, out1, in2, out2, identifiers w1, w2, policies s1, s2, tag-free policies p1, p2, and

topologies t, such that

• s1 = L{in1} w1 : (p1) {out1}Mw0,

• s2 = L{in2} w2 : (p2) {out2}Mw0,

• H0: w1 6= w2, w1 6= w0, w2 6= w0

• H1: out1; t; dup; in2 ≡ drop, and

• H2: out2; t; dup; in1 ≡ drop, then

((s1 + s2); t; dup)* ≡ (s1; t; dup)* + (s2; t; dup)*.

150

Proof. First, note that s1 and s2 have the following desugared forms.

pre1 = (w0; in1; vlan← w1 + w1)

post1 = (out1; vlan← w0 + ¬out1)

s1 = pre1; p; post1

= (w0; in1; vlan← w1 + w1); p; (out1; vlan← w0 + ¬out1)

pre2 = (w0; in2; vlan← w2 + w2)

post2 = (out2; vlan← w0 + ¬out2)

s2 = pre2; q; post2

= (w0; in2; vlan← w2 + w2); q(out2; vlan← w0 + ¬out2)

Assertion Reasoning

((s1 + s2); t; dup)*

≡ (s1; t+ s2; t; dup)* KA-Seq-Dist-R.
≡ (s1; t; dup)*; (s2; t; dup; (s1; t; dup)*)* Lemma 9.
≡ (s1; t; dup)*; (s2; t; dup; (id + s1; t; dup; (s1; t; dup)*))* KA-Star-Unroll-L.
≡ (s1; t; dup)*; (s2; t+ s2; t; dup; s1; t; dup; (s1; t; dup)*)* KA-Seq-Dist-L and

KA-Seq-One.
≡ (s1; t; dup)*; (s2; t+ drop; t; dup; (s1; t; dup)*)* Lemma 11.
≡ (s1; t; dup)*; (s2; t; dup)* KA-Zero-Seq and

KA-Plus-Zero.
≡ (id + s1; t; dup; (s1; t; dup)*); (id + s2; t; dup; (s2; t; dup)*) KA-Star-Unroll-L.
≡ id + s1; t; dup; (s1; t; dup)* + s2; t; dup; (s2; t; dup)*

+s1; t; dup; (s1; t; dup)*; s2; t; dup; (s2; t; dup)* KA-Seq-Dist-L,
KA-Seq-Dist-R.
KA-One-Seq, and
KA-Seq-One.

≡ id + s1; t; dup; (s1; t; dup)* + s2; t; dup; (s2; t; dup)*

+s1; t; dup; (id + (s1; t; dup)*; s1; t; dup);
s2; t; dup; (s2; t; dup)* KA-Star-Unroll-R.

≡ id + s1; t; dup; (s1; t; dup)* + s2; t; dup; (s2; t; dup)*

+s1; t; dup; s2; t; dup; (s2; t; dup)*

+(s1; t; dup)*; s1; t; dup; s2; t; dup; (s2; t; dup)* KA-Seq-Dist-R,
KA-One-Seq, and
KA-Star-Unroll-L.

≡ id + s1; t; dup; (s1; t; dup)* + s2; t; dup; (s2; t; dup)* Lemma 11,
KA-Zero-Seq,

151

KA-Seq-Zero and
KA-Plus-Zero.

≡ id + s1; t; dup; (s1; t; dup)* + id + s2; t; dup; (s2; t; dup)* KA-Plus-Idem,
KA-Plus-Comm.

≡ (s1; t; dup)* + (s2; t; dup)* KA-Star-Unroll-L.

Finally, we show that Corollary 2 follows from Theorem 6.

Corollary 2. For all tag-free slice ingress and egress predicates in1, out1, in2, out2,

identifiers w1, w2, policies s1, s2, tag-free policies p1, p2, and topologies t, such that

• s1 = L{in1} w1 : (p1) {out1}Mw0,

• s2 = L{in2} w2 : (p2) {out2}Mw0,

• H0: w1 6= w2, w1 6= w0, w2 6= w0

• H1: out1; t; dup; in2 ≡ drop,

• H2: out2; t; dup; in1 ≡ drop,

• H3: in1; in2 ≡ drop, then

in1; tag = w0; ((s1 + s2); t; dup)*

≡ in1; tag = w0; (s1; t; dup)*

Proof. By Theorem 6 and KA-Seq-Dist-L, we have in1;w0; (s1)* + in1;w0; (s2)*.

Assertion Reasoning

in1;w0; (s1)* + in1;w0; (s2)*

≡ in1;w0; (s1)* + in1;w0 + in1;w0; s2; (s2)* KA-Star-Unroll-L
and KA-Seq-Dist-L.

≡ in1;w0; (s1)* + in1;w0

+in1;w0; (w0; in2; vlan← w2 + w2); q; post2; (s2)* Substitution for ≡ s2.
≡ in1;w0; (s1)* + in1;w0

+(in1;w0;w0; in2; vlan← w2 + in1;w0;w2);
q; post2; (s2)* KA-Seq-Dist-L.

≡ in1;w0; (s1)* + in1;w0

+(in1; in2;w0;w0; vlan← w2 + in1;w0;w2);
q; post2; (s2)* BA-Seq-Comm.

152

≡ in1;w0; (s1)* + in1;w0

+(drop;w0;w0; vlan← w2 + in1; drop);
q; post2; (s2)* H4 and PA-Contra.

≡ in1;w0; (s1)* + in1;w0 + drop KA-Seq-Zero,
KA-Zero-Seq,
and KA-Plus-Zero.

≡ in1;w0; (s1)* + in1;w0 KA-Plus-Zero.
≡ in1;w0 + in1;w0; s1; (s1)* + in1;w0 KA-Star-Unroll-L.
≡ in1;w0 + in1;w0; s1; (s1)* KA-Plus-Comm

and KA-Plus-Idem.
≡ in1;w0; (s1)* KA-Star-Unroll-L.

Weakening the hypotheses. The hypotheses of Theorem 5 restrict its application

to two slices running alone on the network. While such a result provides insight

into the nature of slice interaction, we show a stronger result in this section that

demonstrates slice isolation in the presence of other slices and activity in the network.

In particular, slices drop traffic with any tag not their own or w0—this prevents

them from interfering with traffic that has been injected into another slice. In turn,

if a slice is compiled with a tag w, it can run in isolation on the same network as any

NetKAT user policy, so long as that policy drops w-tagged traffic.

Definition 21 (Dropping w-tagged Traffic). A policy p drops w-tagged traffic when

• tag = w; p ≡ drop, and

• p; tag = w ≡ drop.

Lemma 12 (No Program Sequencing). For all slice ingress and egress predicates

in, out, slice identifiers w, and policies s, p, q, and topologies t, such that

• s = L{in} w : (p) {out}Mw0,

• H0: w 6= w0,

• H1: p, q, in, and out are tag-free,

• H2: out; t; dup; q ≡ drop and q; t; dup; in ≡ drop,

153

• H3: q drops w-tagged traffic,

then the following equivalences hold:

s; t; dup; q ≡ drop

q; t; dup; s ≡ drop

Proof. First, note that s has the following desugared form.

pre = (w0; in; tag← w + w)

post = (out; tag← w0 + ¬out)

s = pre; p; post

= (w0; in; tag← w + w); p; (out; tag← w0 + ¬out)

Case 1: s; t; dup; q ≡ drop. We have:

Assertion Reasoning

s; t; dup; q
≡ pre; p; post; t; dup; q Substitution for s.
≡ pre; p; (out; tag← w0 + ¬out); t; dup; q Substitution for post.
≡ pre; p; (out; tag← w0; t; dup; q + ¬out; t; dup; q) KA-Seq-Dist-R.
≡ pre; p; (tag← w0; out; t; dup; q + ¬out; t; dup; q) H1, PA-Mod-Filter-Comm.
≡ pre; p; (drop + ¬out; t; dup; q) H2.
≡ pre; p;¬out; t; dup; q KA-Plus-Comm and

KA-Plus-Zero.
≡ (w0; in; tag← w + w); p;¬out; t; dup; q Substitution for pre.
≡ (w0; in; tag← w;w + id;w); p;¬out; t; dup; q PA-Mod-Filter and

KA-One-Seq.
≡ (w0; in; tag← w + id);w; p;¬out; t; dup; q KA-Seq-Dist-R.
≡ (w0; in; tag← w + id); p;¬out; t; dup;w; q H2, Lemma 10.
≡ (w0; in; tag← w + id); p;¬out; t; dup; drop H3.
≡ drop KA-Seq-Zero.

Case 2: q; t; dup; s ≡ drop. We have:

Assertion Reasoning
154

q; t; dup; s
≡ q; t; dup; pre; p; post Substitution for s.
≡ q; t; dup; (w0; in; tag← w + w); p; post Substitution for pre.
≡ (q; t; dup;w0; in; tag← w + q; t; dup;w); p; post KA-Seq-Dist-L.
≡ (q; t; dup;w0; in; tag← w + q;w; t; dup); p; post PA-Obs-Filter-Comm and

Lemma 10.
≡ (q; t; dup;w0; in; tag← w + drop; t; dup); p; post H3.
≡ q; t; dup;w0; in; tag← w; p; post KA-Zero-Seq and

KA-Plus-Zero.
≡ q; t; dup; in;w0; tag← w; p; post BA-Seq-Comm.
≡ drop;w0; tag← w; p; post H2.
≡ drop KA-Zero-Seq.

Proof. First, note that s has the following desugared form.

pre = (w0; in; vlan← w + w)

post = (out; vlan← w0 + ¬out)

s = pre; p; post

= (w0; in; vlan← w + w); p; (out; vlan← w0 + ¬out)

Assertion Reasoning

((s+ q); t; dup)*

≡ (s; t+ q; t; dup)* KA-Seq-Dist-R.
≡ (s; t; dup)*; (q; t; dup; (s; t; dup)*)* Lemma 9.
≡ (s; t; dup)*; (q; t; dup; (id + s; t; dup; (s; t; dup)*))* KA-Star-Unroll-L.
≡ (s; t; dup)*; (q; t; dup + q; t; dup; s; t; dup; (s; t; dup)*)* KA-Seq-Dist-L,

KA-Seq-One.
≡ (s; t; dup)*; (q; t; dup + drop; t; dup; (s; t; dup)*)* Lemma 12.
≡ (s; t; dup)*; (q; t; dup)* KA-Zero-Seq,

KA-Plus-Zero.
≡ (id + s; t; dup; (s; t; dup)*); (id + q; t; dup; (q; t; dup)*) KA-Star-Unroll-L.
≡ id + s; t; dup; (s; t; dup)* + q; t; dup; (q; t; dup)*

+s; t; dup; (s; t; dup)*; q; t; dup; (q; t; dup)* KA-Seq-Dist-L,
KA-Seq-Dist-R.
KA-One-Seq,
KA-Seq-One.

≡ id + s; t; dup; (s; t; dup)* + q; t; dup; (q; t; dup)*

+s; t; dup; (id + (s; t; dup)*; s; t; dup);
q; t; dup; (q; t; dup)* KA-Star-Unroll-R.

≡ id + s; t; dup; (s; t; dup)* + q; t; dup; (q; t; dup)*

155

+s; t; dup; q; t; dup; (q; t; dup)*

+(s; t; dup)*; s; t; dup; q; t; dup; (q; t; dup)* KA-Seq-Dist-R,
KA-One-Seq,
KA-Star-Unroll-L.

≡ id + s; t; dup; (s; t; dup)* + q; t; dup; (q; t; dup)* Lemma 12,
KA-Zero-Seq,
KA-Seq-Zero,
KA-Plus-Zero.

≡ id + s; t; dup; (s; t; dup)* + id + q; t; dup; (q; t; dup)* KA-Plus-Idem,
KA-Plus-Comm.

≡ (s; t; dup)* + (q; t; dup)* KA-Star-Unroll-L.

A similar corollary holds when the domain of q does not overlap with the ingress

of s.

Theorem 7. Slice Composition

For all tag-free slice ingress and egress predicates in, out, identifiers w, policies

s, q, tag-free policies p, and topologies t, such that

• s = L{in} w : (p) {out}Mw0,

• H0: w 6= w0,

• H1: out; t; dup; q ≡ drop,

• H2: q; t; dup; in ≡ drop,

• H3: q drops w-tagged traffic, then

((s+ q); t; dup)* ≡ (s; t; dup)* + (q; t; dup)*

Proof.

Assertion Reasoning

in; tag = w0; ((s+ q); t; dup)*

≡ in; tag = w0; ((s; t; dup)* + (q; t; dup)*) Theorem 1
≡ in; tag = w0; (s; t; dup)* + in; tag = w0; (q; t; dup)* KA-Seq-Dist-L
≡ in; tag = w0; (s; t; dup)*+

in; tag = w0; (id + q; t; dup; (q; t; dup)*) KA-Unroll-L

156

≡ in; tag = w0; (s; t; dup)*+
in; tag = w0+
in; tag = w0; q; t; dup; (q; t; dup)* KA-Seq-Dist-L,

KA-Seq-One
≡ in; tag = w0; (s; t; dup)*+

in; tag = w0+
tag = w0; in; q; t; dup; (q; t; dup)* in is tag-free

≡ in; tag = w0; (s; t; dup)*+
in; tag = w0 + drop H3, KA-Seq-Zero,

and KA-Zero-Seq
≡ in; tag = w0; (s; t; dup)*+

in; tag = w0; KA-Plus-Zero
≡ in; tag = w0; (id + s; t; dup; (s; t; dup)*)+

in; tag = w0; KA-Unroll-L
≡ in; tag = w0+

in; tag = w0; s; t; dup; (s; t; dup)*+
in; tag = w0; KA-Seq-Dist-L

and KA-Seq-One
≡ in; tag = w0 + in; tag = w0; s; t; dup; (s; t; dup)* KA-Plus-Comm

and KA-Plus-Idem
≡ in; tag = w0; (s; t; dup)* KA-Unroll-L

and KA-Seq-Dist-L

With this theorem, we can also see that isolation is preserved across n-ary slice

composition.

Lemma 13 (Parallel Composition Preserves w-dropping). If policies p, q drop w-

tagged traffic, then p+ q drops w-tagged traffic.

Proof. We have the following hypotheses:

• tag = w; p ≡ p; tag = w ≡ drop

• tag = w; q ≡ q; tag = w ≡ drop

And we must show the following goals:

• tag = w; (p+ q) ≡ drop

• (p+ q); tag = w ≡ drop

157

The result is follows from the hypotheses and KA-Seq-Dist-L, KA-Plus-Zero,

and the substitution of equals for equals.

Lemma 14 (Parallel Composition Preserves Disjoint Boundaries). If pi; t; dup; pj ≡

drop for all pairs (i, j) for i 6= j, 1 <= i <= n, 1 <= j <= n, then p1; t; dup; (p2+p3) ≡

drop and (p2 + p3); t; dup; p1 ≡ drop.

Proof. The result follows from the hypotheses, KA-Seq-Dist-L, and KA-Seq-Dist-R.

Lemma 15 (Slices Drop w-tagged Traffic). For all slices s = L{in} w : (p) {out}Mw0

and tags w′ such that w′ 6= w 6= w0, s drops w′-tagged traffic.

Proof. First, note that s has the following desugared form.

pre = (w0; in; vlan← w + w)

post = (out; vlan← w0 + ¬out)

s = pre; p; post

= (w0; in; vlan← w + w); p; (out; vlan← w0 + ¬out)

Goal 1: tag = w′; s ≡ drop. We have:

Assertion Reasoning

tag = w′; s
≡ w′; (w0; in; vlan← w + w); p; (out; vlan← w0 + ¬out) Substitution for s.
≡ (w′;w0; in; vlan← w + w′;w); p; (out; vlan← w0 + ¬out) KA-Seq-Dist-L.
≡ (drop; in; vlan← w + drop); p; (out; vlan← w0 + ¬out) Hyp. and PA-Contra.
≡ drop KA-Seq-Zero,

KA-Plus-Zero.

Goal 2: s; tag = w′ ≡ drop. We have:

158

Assertion Reasoning

s; tag = w′

≡ (w0; in; vlan← w + w); p; (out; vlan← w0 + ¬out);w′ Substitution for s
≡ (w0; in; vlan← w + w); p; (out; vlan← w0;w

′ + ¬out;w′) KA-Seq-Dist-R
≡ (w0; in; vlan← w + w); p; (out; drop + ¬out;w′) Hyp.,

PA-Mod-Filter,
PA-Contra

≡ (w0; in; vlan← w + w); p;¬out;w′ KA-Seq-Zero,
KA-Plus-Zero

≡ (w0; in; vlan← w + w);w′; p;¬out Policy/predicates are
tag-free

≡ (w0; in; vlan← w;w′ + w;w′); p;¬out KA-Seq-Dist-R
≡ (w0; in; drop + w;w′); p;¬out Hyp.,

PA-Mod-Filter,
PA-Contra

≡ (w0; in; drop + drop); p;¬out Hyp., PA-Contra
≡ drop KA-Seq-Zero,

KA-Plus-Zero.

Proposition 1 (N-ary Slices are Isolated). For slices s1, . . . , sn compiled with tags

w1, . . . , wn such that for all pairs (i, j) for i 6= j, 1 <= i <= n, 1 <= j <= n,

• wi 6= wj 6= w0, and

• si; t; dup; sj ≡ sj; t; dup; si ≡ drop, then

((s1 + . . .+ sn); t; dup)* ≡ (s1; t; dup)* + . . .+ (sn; t; dup)*

Proof. By induction on n. The base case (n = 1) is immediate. We proceed with the

inductive step.

1. Let q = (s1 + . . .+ sk).

2. From Lemma 13 and the hypotheses, we have that q drops wk+1-tagged traffic.

3. From Lemma 14 and the hypotheses, we have that

sk+1; t; dup; q ≡ q; t; dup; sk+1 ≡ drop

159

.

From Theorem 1 we have:

Assertion Reasoning

((sk+1 + q); t; dup)* ≡ (sk+1; t; dup)* + (q; t; dup)* Theorem 1.
≡ (sk+1; t; dup)* + ((s1 + . . .+ sk); t; dup)* Substitution for q.
≡ (sk+1; t; dup)* + (s1; t; dup)* + . . .+ (sk; t; dup)* Induction hypothesis.
≡ (s1; t; dup)* + . . .+ (sk; t; dup)* + (sk+1; t; dup)* KA-Plus-Comm.

160

Appendix B

Correctness of the Concurrent

NetCore Metatheory

This section presents proofs of the lemmas and theorems from Chapter 3.

Lemma 16 (Weakening). If Γ1,Γ2 ` p : τ and x 6∈ p and ` τ ′, then Γ1, x : τ ′,Γ2 `

p : τ .

Proof. By induction on p.

Lemma 17 (Substitution). If Γ1, x : τ ′,Γ2 ` p : τ and · ` q : τ ′, then Γ1,Γ2 ` p[q/x] :

τ .

Proof. By induction on p. All cases except for p = x are trivial (p[q/x] = p) or by

the IH (p[q/x] = p1[q/x]; p2[q/x]). When p = x, we replace the Var derivation with

a weakened form (Lemma 16) of the assumed derivation.

Lemma 18 (Normalization). If

` τ = (R,W) and ` PK : τ and · ` p : τ

then 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 such that

1. ` PK′ : τ , and

161

2. PK′ \W ⊆ PK \W.

Proof. By induction on the policy p, leaving τ general. The only difficulty is showing

that (ConExit) can always successfully merge the results of well typed concurrency,

which can be seen by a careful analysis of the cross product, using part (2) of the IH

to show that fields not in the write permission W are “read-only”. Since the rules are

syntax directed, we use rule names below.

(Id) We have 〈id, 〈PK,W 〉〉 immediately, and we already know that ` PK : τ . By

reflexivity, PK′ \W ⊆ PK \W.

(Drop) We have 〈drop, 〈PK,W〉〉 → 〈id, 〈∅,W〉〉 immediately, and ` ∅ : τ and ∅ \W ⊆

PK \W vacuously.

(Match) We take a step to 〈id, {pk ∈ PK | pk(f) = v}〉, which is terminal. If ` PK : τ ,

then ` {pk ∈ PK | pk(f) = v} : τ . Since this set of packets is a subset of PK, it

is easy to see that {pk ∈ PK | pk(f) = v} \W ⊆ PK \W.

(Not) First, 〈¬a, 〈PK,W〉,→〉〈a, 〈notPK 〈PK,W〉〉〉. By the IH on a with · ` a : τ , we

know that 〈a,PK〉 →∗ 〈id, 〈PK′,W〉〉 and ` PK′ : τ . So we can then derive

〈a, 〈notPK 〈PK,W〉〉〉 →∗ 〈id, 〈notPK 〈PK′,W〉〉〉;

we conclude by stepping 〈id, 〈notPK 〈PK′,W〉〉〉 → 〈id, 〈PK \ PK′,W〉〉, which is

terminal. Since ` PK : τ and ` PK′ : τ , we know that ` PK \ PK′ : τ .

Finally, for (2), note that PK \ PK′ is a subset of PK, so we are done.

(Modify) We take a step:

〈f ← v, 〈PK,W〉〉 → 〈id, 〈{pk [f := v] | pk ∈ PK},W〉〉.

162

We know that f ∈ W and ` PK : τ guarantees that the packets match their

type. The resulting state is terminal, and we have ` {pk [f := v] | pk ∈ PK} : τ .

For (2), we can see that {pk [f := v] | pk ∈ PK} \W is in fact equal to PK \W.

(Var) Contradictory—can’t apply in an empty context.

(Par) We step

〈p+ q, 〈PK,W〉〉 → 〈p+ q, 〈par 〈PK,W〉 〈PK,W〉〉〉.

We have · ` q : τ1 and · ` p : τ2. We can weaken ` PK : τ1 ∪ τ2 to find PK

well typed at each of the smaller types. Then, by the IH on p and q (with these

weakened typing derivations), we know that 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp,W 〉〉 and

〈q, 〈PK,W〉〉 →∗ 〈id, 〈PKq,W〉〉, (and PKp and PKq are well typed at τ). We can

therefore find

〈p+ q, 〈par PK PK〉〉 →∗ 〈id + id, 〈par 〈PKp,W〉 〈PKq,W〉〉〉.

Note that there are many ways we can take interleave the steps, but we can get

some result by running all of the steps for p first and then the steps for q. (We

will later find that well typed programs are in fact confluent (Lemma 2).) In

any case, we can then step

〈id + id, 〈par 〈PKp,W〉 〈PKq,W〉〉〉 → 〈id, 〈PKp ∪ PKq,W〉〉,

which is terminal. We can find that these packets are well typed because we

took the union of well typed packets.

For (2), we know that PKP \W ⊆ PK \W and PKq \W ⊆ PK \W. We can

therefore conclude that PKp ∪ PKq \W ⊆ PK \W.

163

(Seq) We have · ` p : τ1 and · ` q : τ2. We have ` PK : τ1 ∪ τ2; as for parallel

composition, we can weaken this typing to find ` PK : τ1. We can now apply

the IH on p (with this weakened derivation), we know that 〈p, 〈PK,W〉〉 →∗

〈id, 〈PKp,W〉〉, where PKp is well typed. We can therefore find 〈p; q, 〈PK,W〉〉 →∗

〈id; q, 〈PKp,W〉〉. We can then step 〈id; q, 〈PKp,W〉〉 → 〈q, 〈PKp,W〉〉. At this

point, we know that PKp \W ⊆ PK \W.

Now, by the IH on q (with a weakened typing derivation for PK′p), find that

〈q,PK′p〉 →∗ 〈id,PKq〉 such that PKq is well typed—and we have reached a well

typed terminal state. Furthermore, PKq \W ⊆ PKp \W ⊆ PK \W, so we are

done.

(Con) We begin by stepping

〈p Wp||Wq q, 〈PK,Wp ∪Wq〉〉 →

〈p Wp||Wq q, 〈conWp∪Wq 〈PK \Wq,Wp〉 〈PK \Wp,Wq〉〉〉,

where Wp ∩Wq = ∅ and Rp ∩Wq = ∅ and Wp ∩ Rq = ∅.

We have ` PK : (Rp,Wp) ∪ (Rq,Wq). Note that (Rp,Wp) ∪ (Rq,Wq) = (RP ∪

Rq,Wp∪Wq) because of the disjointness conditions in the premise of the typing

rule. We can therefore weaken the packet typing · ` PK : (Rp ∪Rq,Wp ∪Wq) to

find · ` PK \Wq : (Rp ∪ Rq,Wp) and · ` PK \Wp : (Rq ∪ Rq,Wq). With these

packet typings, we can now apply the IH, finding that

〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id, 〈PKp,Wp〉〉

and

〈q, 〈PK \Wp,Wq〉〉 →∗ 〈id, 〈PKq,Wq〉〉.

164

Applying the congruence rules to these derivations, we eventually reach the

state 〈id Wp||Wq id, 〈conWp∪Wq 〈PKp,Wp〉 〈PKq,Wq〉〉〉, From there we step to

〈id,PKp × PKq〉

Finally, we must show that (a) PKp × PKq is well defined, and (b) that

PKp × PKq \Wp ∪Wq ⊆ PK \Wp ∪Wq.

For the cross product to be well defined, it must be the case that for all pairs of

packets pk p ∈ PKp and pk q ∈ PKq, every field f ∈ F, one of the following must

adhere:

– pk p(f) is defined and pk q(f) = ⊥; or

– pk q(f) is defined and pk p(f) = ⊥; or

– pk p(f) = pk q(f) (or both are undefined); or

– there is a conflict in a common field and pk p × pk q is undefined.

We will show that those fields in Wp fall into the first class, those fields in Wq

fall into the second, and the rest fall into the last two. By the IH for p, we know

that PKp \Wp ⊆ (PK \Wq) \Wp and, likewise, PKq \Wq ⊆ (PK \Wp) \Wq.

The writable fields in Wp of packets in PKp aren’t found at all in the packets in

PKq. We know that PKq \Wq ⊆ (PK \Wp) \Wq, and f ∈ Wp implies f 6∈ Wq;

it would therefore be a contradiction to have a packet with a field f ∈ WP in

PKq, since such a packet cannot exist in (PK \Wp)\Wq. Similarly, the writable

fields in Wq of packets in PKq aren’t found at all in the packets in PKp. Finally,

we can rewrite the right-hand sides of the (2) parts of the IH to see that PKp

and PKq are bounded by PK \Wp ∪Wq. That is, all of the read-only packets in

PKp and PKq haven’t changed their fields at all from PK.

For (b), suppose pk ∈ (PKp × PKq) \ Wp ∪Wq. We must show that pk ∈

PK \ Wp ∪Wq. As we have seen for (a), the fields in Dom (pk) are precisely

165

those which weren’t written by p or q—the third case. So there exist pk p ∈ PKp

and pk q ∈ PKq such that for all fields in F \ (Wp ∪Wq), we know that pk(f) =

pk p(f) = pk q(f). We can therefore conclude that:

(PKp × PKq) \ (Wp ∪Wq) = PKp \ (Wp ∪Wq)

= PKp \ (Wp ∪Wq)

⊆ PK \ (Wp ∪Wq).

Lemma 19 (Diamond property). If 〈p, δ〉 → σ1 and 〈p, δ〉 → σ2 (such that σ1 6= σ2)

then there exists a σ′ such that σ1 → σ′ and σ2 → σ′.

Proof. By induction on p, with cases on the step taken.

(p = id) Contradictory—doesn’t step.

(Drop) There is only one way to step, so σ1 = σ2.

(Match) Can only step in one way, so σ1 = σ2.

(Modify) Can only step in one way, so σ1 = σ2.

(ParEnter) We step from δ = 〈PK,W〉 to 〈par δ δ〉. There are no other possible steps, so

σ1 = σ2.

(ParL) We have p = p1 + p2. There are two cases: the other step is also by ParL (and

we use the IH on p1 and ParL to join back up), or the other step is by ParR.

We have δ = 〈par δ1 δ2〉. In one derivation, we apply the congruent step:

〈p1, δ1〉 → 〈p′1, δ′1〉, yielding an outer state of 〈p′1 + p2, δ
′
1 + δ2〉; in the

other derivation, we step 〈p2, δ2〉 → 〈p′2, δ′2〉, yielding an outer state of

〈p1 + p′2, δ1 + δ′2〉. Each side can then use the other’s premise to step to

〈p′1 + p′2, δ
′
1 + δ′2〉, and we are done.

166

(ParR) As for ParL.

(ParExit) We step from δ = 〈par 〈PKp1 ,W〉 〈PKp2 ,W〉〉 to δ′ = 〈PKp1 ∪ PKp2 ,W〉. Since

p1 and p2 are terminal, no other step can be taken, and σ1 = σ2 = 〈id, δ′〉.

(SeqEnter) There is only one step to take, so σ1 = σ2.

(SeqL) We have p = p1; p2, and p1 takes two different steps. We can join up the

executions by the IH on p1 and SeqL.

(SeqR) There is only one step to take, so σ1 = σ2.

(NotEnter) There is only one way to step, so σ1 = σ2.

(NotInner) We have p = a and a takes two different steps. By the IH on a and NotInner,

we can rejoin the executions.

(NotExit) Contradictory—there is only one way to step.

(ConEnter) There is only one way to step, so σ1 = σ2.

(ConL) We step to 〈p′ Wp||Wq q, 〈conW δ′p δq〉〉, since 〈p, δp〉 → 〈p′, δ′p〉. If the other step

is also by ConL, then we can just apply the IH.

If the other step is by ConR, we have 〈q, δq〉 → 〈q′, δ′q〉, and the whole term

stepping to 〈p Wp||Wq q
′, 〈conW δp δ

′
q〉〉. We can step this term by applying

ConL with our premise about p stepping above. Similarly, we can step our

term above via ConR with the premise here. The terms coincide, stepping to

〈p′ Wp||Wq q
′, 〈conW δ′p δ

′
q〉〉.

(ConR) As for ConL.

(ConExit) There is only one way to step, so σ1 = σ2.

167

Lemma 20 (Confluence). If σ →∗ σ1 and σ →∗ σ2 then there exists σ′ such that

σ1 →∗ σ′ and σ2 →∗ σ′.

Proof. By induction on the derivation of σ →∗ σ1, using the diamond property

(Lemma 19).

Lemma 21 (Predicates are singular). For all packets pk, JaK pk ⊆ {pk}.

Proof. By induction on a.

(a = id) JaK pk = {pk}.

(a = drop) JaK pk = ∅.

(a = f = v) Jf = vK is either {pk} or ∅, depending on the value of pk(f).

(a = ¬a′) By the IH, we know that Ja′K pk is either {pk} or ∅, so {pk} \ (Ja′K pk) is also

either {pk} or ∅—whichever Ja′K pk was not.

(a = a1 + a2) By the IH, Ja1K pk ⊆ {pk} and Ja2K pk ⊆ {pk}, so Ja1K pk ∪ Ja2K pk ⊆ {pk}.

(a = a1; a2) By the IH, Ja1K pk ⊆ {pk}. If Ja1K = ∅, then
⋃

pk∈∅ Ja2K pk = ∅ ⊆ {pk}

immediately. If, on the other hand, Ja1K = {pk}, then:

Ja1; a2K pk =
⋃

pk ′∈Ja1Kpk Ja2K pk ′

= Ja2K pk (because Ja1K pk = {pk})

⊆ {pk} (by the IH)

and we are done.

168

Lemma 22 (Adequacy). If ` τ = (R,W) and · ` p : τ = (R,W) with no concurrency,

then for all packets ` PK : τ , 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 and PK′ =
⋃

pk∈PK JpK pk,

where:

JpK ∈ PK→ P(PK)

JidK pk = {pk}

JdropK pk = ∅

Jf = vK pk =


{pk} pk(f) = v

∅ otherwise

Jf ← vK pk = {pk [f := v]}

J¬aK pk = {pk} \ (JaK pk)

Jp+ qK pk = JpK pk ∪ JqK pk

Jp; qK pk =
⋃

pk ′∈JpKpk JqK pk ′

Proof. By induction on · ` p : τ , noting that PK′ always exists by the strong normal-

ization result (Lemmas 1 and 2).

(Id) PK′ = PK =
⋃

pk∈PK pk =
⋃

pk∈PK JidK pk .

(Drop) PK′ = ∅ =
⋃

pk∈PK ∅ =
⋃

pk∈PK JdropK pk .

(Match) PK′ = {pk ∈ PK | pk(f) = v} =
⋃

pk∈PK Jf = vK pk .

(Modify) PK′ = {pk [f := v] | pk ∈ PK} =
⋃

pk∈PK Jf ← vK pk .

(Not) By the IH, 〈a, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 such that PK′ =
⋃

pk∈PK JaK pk . We

can then see that 〈¬a, 〈PK,W〉〉 →∗ 〈id, 〈PK \ PK′,W〉〉, where PK \ PK′ =

(
⋃

pk∈PK {pk})\(
⋃

pk∈PK JaK pk). We must show that this is equivalent to PK′′ =⋃
pk∈PK J¬aK pk =

⋃
pk∈PK({pk} \ JaK pk).

Suppose pk ∈ PK′′. Then pk ∈ {pk} but pk 6∈ JaK pk . Since predicates are

singular (Lemma 21), we know that pk /∈ JaK pk ′ for any pk ′ 6= pk . So then

pk ∈ (
⋃

pk ′∈PK {pk′}) \ (
⋃

pk ′∈PK JaK pk ′) = PK \ PK′.

169

On the other hand, suppose pk ∈ PK \ PK′. This means that pk ∈ PK but

pk 6∈ PK′ =
⋃

pk ′∈PK JaK pk ′. This means that, in particular, pk 6∈ JaK pk , so

then pk ∈ {pk} \ JaK pk , so pk ∈
⋃

pk ′∈PK({pk′} \ JaK pk ′) = PK′′.

(Var) Contradictory—we assumed that p was well typed in an empty context.

(Par) We have 〈p+ q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉. From this derivation, we can

extract the derivations 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp,W〉〉 and 〈q, 〈PK,W〉〉 →∗

〈id, 〈PKq,W〉〉 such that PK′ = PKp ∪ PKq.

By the IHs on p and q, we know that
⋃

pk∈PK JpK pk = PKp and
⋃

pk∈PK JqK =

PKq, respectively. It is then straightforward to see that
⋃

pk∈PK JpK pk ∪JqK pk =⋃
pk∈PK JpK ∪

⋃
pk∈PK JqK.

(Seq) We have 〈p; q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉. We can extract the derivations

〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp,W〉〉 and 〈q, 〈PKp,W〉〉 →∗ 〈id, 〈PK′,W〉〉.

By the IH on p, we know that PKp =
⋃

pk∈PK JpK pk . Then, by the IH on q, we

know that:

PK′ =
⋃

pk ′∈PKp
JqK pk ′

=
⋃

pk ′∈
⋃

pk∈PKJpKpk JqK pk ′

=
⋃

pk∈PK
⋃

pk ′∈JpKpk JqK pk ′

=
⋃

pk∈PK Jp; qK pk

which concludes this case.

(Con) Contradictory—we assumed there was no concurrency.

Lemma 23 (Packets aren’t ever created). If 〈p, 〈∅,W〉〉 →∗ 〈id, 〈PK,W〉〉 then PK =

∅.

Proof. By induction on p.

170

• (p = id) Immediate.

• (p = drop) By Drop.

• (p = p+ q) By the IHs, p and q both produce ∅, so their union is also ∅.

• (p = p; q) By the first IH, p produces ∅; by the second IH, running q on ∅ also

produces ∅.

• (p = ¬a) By the IH on a and the fact that ∅ \ ∅ = ∅.

• (p=p Wp||Wq q) We know that ∅ \Wp = ∅ \Wq = ∅, so we know that p and q

separately produce ∅. We then know that ∅ × ∅ = ∅.

Lemma 24 (Monotonicity of policies). If 〈p, 〈PK1,W〉〉 →∗ 〈id, 〈PK′1,W〉〉 and PK2 ⊆

PK1 then 〈p, 〈PK2,W〉〉 →∗ 〈id, 〈PK′2,W〉〉 such that PK′2 ⊆ PK′1.

Proof. By induction on p.

• (p = id) Immediate.

• (p = drop) By Drop—both versions return ∅.

• (p = p+ q) By the IHs, p and q both produce subsets, and the union of subsets

is a subset of a union of supersets.

• (p = p; q) By the first IH, p produces a subset; by the second IH, running q on

a subset also produces a subset.

• (p = ¬a) We know by the IH that a on PK1 produces PK′1 implies that a on

PK2 produces PK′2 such that PK′2 ⊆ PK′1.

171

Suppose pk ∈ PK2, so pk ∈ PK1. Since a is necessarily concurrency free—

there are no concurrent prodicates—by Lemma 3, it suffices to show that⋃
pk∈PK2

J¬aK pk ⊆
⋃

pk∈PK2
J¬aK pk .

PK′2 =
⋃

pk∈PK2
J¬aK pk

=
⋃

pk∈PK2
{pk} \ JaK pk

⊆
⋃

pk∈PK1
{pk} \ JaK pk

=
⋃

pk∈PK1
J¬aK pk

= PK′1

The key observation is that J¬aK operates pointwise on packets—packets that

are rejected when checking PK1 are also rejected when checking PK2.

• (p=p Wp||Wq q) We know that each branch produces a subset, and that the × on

subsets is a subset of a × of supersets.

Lemma 25 (Times distributes over union.). PK×(PK1∪PK2) = PK×PK1∪PK×PK2.

Proof. The × operator is defined pointwise on packets in its operand sets. Hence:

PK× (PK1 ∪ PK2)

= {pk 1 × pk 2| pk 1 ∈ PK, pk 2 ∈ (PK1 ∪ PK2)}

= {pk 1 × pk 2| pk 1 ∈ PK, pk 2 ∈ PK1} ∪ {pk 1 × pk 2| pk 1 ∈ PK, pk 2 ∈ PK2}

= PK× PK1 ∪ PK× PK2

Lemma 26 (Times is commutative.). PK1 × PK2 = PK2 × PK1.

Proof. Immediate from the definition of times (×).

172

Lemma 27 (Times is associative.). (PK1 × PK2)× PK3 = PK1 × (PK2 × PK3).

Proof. Immediate from the definition of times (×).

Lemma 28 (Packet extension). If ` p : (Rp,Wp) and ` PK : (Rp,Wp) and Rp ∩

Wq = Rq ∩ Wp = Wp ∩ Wq = ∅ then 〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id, 〈PKp,Wp〉〉 and

〈p, 〈PK,Wp〉〉 →∗ 〈id, 〈PKp × PK \Wp,Wp〉〉.

Proof. By induction on the typing derivation.

(Id) Immediate.

(Drop) Immediate, stepping by Drop, we have ∅ = ∅ × PK \Wp.

(Match) Immediate, stepping by Match. We have {pk ∈ PK \Wq | pk(f) = v} =

{pk ∈ PK | pk(f) = v}, since (Rp ∪ Wp) ∩ Wq = ∅ and f ∈ Rp ∪ Wp. Since

we haven’t altered any packets, we know that {pk ∈ PK | pk(f) = v} =

{pk ∈ PK | pk(f) = v} × PK \Wp, and we are done.

(Not) By the IH, a on PK \Wq produces PKa and a on PK produces PKa × PK \Wp.

We must show that ¬a on PK \Wq produces some PKp and ¬a on PK produces

PKp×PK\Wp. We find that the first case produces PK\Wq\PKa, while the latter

produces PK \ (PKa × PK \Wp). We must show that PK \ (PKa × PK \Wp) =

(PK \ Wq \ PKa) × PK \ Wp. We can find this directly from the fact that

(Rp ∪Wp) ∩Wq: we will always be in the “both functions defined” cases of ×.

(Modify) Running f ← v on PK \Wq yields PKp = {pk [f := v] | pk ∈ PK \Wq}, while

running it on PK yields {pk [f := v] | pk ∈ PK}.

173

Since Wp ∩Wq = ∅ and f ∈ Wp, we know that f 6∈ Wq, so:

{pk [f := v] | pk ∈ PK} = {pk [f := v] | pk ∈ PK \Wq} × PK \ {f }

= {pk [f := v] | pk ∈ PK \Wq} × PK \ {Wp}

= PKp × PK \ {Wp}

(Var) Contradictory—we assumed an empty context.

(Par) We know by the first IH that p1 on PK \Wq yields PKp1 and p1 on PK yields

PKp1 × PK \Wp1 . Similarly, the second IH tells us that p2 on PK′ \Wq yields

PKp2 iff p2 on PK′ yields PKp2 × PK′ \Wp2 .

We must show that p = p1 + p2 on PK \ Wq yields PKp and p on PK yields

PKp × PK \ (Wp1 ∪Wp2).

By the strong normalization result (Lemmas 1 and 2), witnessing the existence

of a single execution path of a well-typed policy yields the same result as ev-

ery execution path. We can build such an execution for p by stepping with

ParEnter, and then repeatedly stepping with first the left, and then the right

congruences according to the executions of p1 and p2 resulting from the IH’s.

Finally, execution terminates by applying ParExit. Hence, we have:

〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id,PKp1 ∪ PKp2〉

and

〈p, 〈PK,Wp〉〉 →∗ 〈id, (PKp1 × PK \Wp) ∪ (PKp2 × PK \Wp)〉

The result follows from distributing × over the union using Lemmas 25 and 26.

174

(Seq) We know by the first IH that p1 on PK \Wq yields PKp1 and p1 on PK yields

PKp1 × PK \Wp1 . Similarly, the second IH tells us that p2 on PK′ \Wq yields

PKp2 and p2 on PK′ yields PKp2 × PK′ \Wp2 .

We must show that p = p1; p2 on PK \Wq yields PKp iff p on PK yields PKp ×

PK \ (Wp1 ∪Wp2).

We can apply the first IH to find that p1 produces PKp1 on PK \Wq iff p1 on

PK produces PKp1 × PK \Wp1 .

We must show that p2 on PKp1 \ Wq produces PKp2 iff p2 on PKp1 produces

PKp2 ×PKp1 \Wp2 . This is exactly the second IH, though we must observe that

PKp1 = PKp1 \Wq.

(Con) We know by the first IH that p1 on PK \Wp2 \Wq yields PKp1 and p1 on PK \

Wp2 yields PKp1 × PK \Wp2 \Wq. Similarly, the second IH tells us that p2 on

PK \Wp1 \Wq yields PKp2 and p2 on PK \Wp1 yields PKp2 × PK \Wp1 \Wq.

We must show that p = p1 Wp1
||Wp2

p2 on PK\Wq yields PKp and p on PK yields

PKp × PK \Wq.

By the strong normalization result (Lemmas 1 and 2), witnessing the existence

of a single execution path of a well-typed policy yields the same result as every

execution path. We can build such an execution for p by stepping with Co-

nEnter, and then repeatedly stepping with first the left, and then the right

congruences according to the executions of p1 and p2 resulting from the IH’s.

Finally, execution terminates by applying ConExit. Hence, we have:

〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id, 〈PKp1 × PKp2 ,Wp〉〉

175

and

〈p, 〈PK,Wp〉〉 →∗ 〈id, 〈(PKp1 × PK \Wp2 \Wp)× (PKp2 × PK \Wp1 \Wp),Wp〉〉

By the associativity and commutativity of times (Lemmas 27 and 26), we have:

PKp1 × PKp2 × PK \Wp2 \Wp × PK \Wp1 \Wp

After noting that Wp1 ∩Wp2 = ∅ (because p is well typed), we have:

PKp1 × PKp2 × PK \ (Wp2 ∪Wp2) \Wp

Of course, as (Wp2 ∪Wp2) ⊆ Wp (again due to typing), we have:

(PKp1 × PKp2)× PK \Wp

Hence, we can conclude:

〈p, 〈PK,Wp〉〉 →∗ 〈id, 〈(PKp1 × PKp2)× PK \Wp,Wp〉〉

Lemma 29 (Permission extension). If ` p : (R,Wp) and Wp ⊆ W then

〈p, 〈PK,Wp〉〉 →∗ 〈id, 〈PK′,Wp〉〉

iff

〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉.

Proof. By induction on the typing derivation.

176

(Id) Immediate.

(Drop) Immediate, stepping by Drop.

(Match) Immediate, stepping by Match.

(Not) By the IH, wrapping up the derivation with NotEnter and NotInner.

(Modify) Immediate, since f ∈ Wp implies f ∈ W, we can always step by Modify.

(Var) Contradictory—we assumed an empty context.

(Par) By the IHs, wrapping up the derivations with ParEnter and ParExit.

(Seq) By the IH, wrapping up the derivation with SeqEnter and SeqR.

(Con) By the IH—we can change the write permission stored in the con state without

affecting the derivation. We wrap up the derivation with ConEnter (with

different write permission) and ConExit (restoring the write permission).

Lemma 30 (Concurrency serializes). If ` p Wp||Wq q : (R,W) and ` PK : τ then

〈p Wp||Wq q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 iff 〈p; q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉.

Proof. Because p is well typed, it must be the case that W = Wp ∪Wq. We proceed

by examining each case separately.

From concurrent to sequential. When going from concurrent composition

to sequential composition, we drop ConEnter altogether, and we apply confluence

(Lemma 2) to run p first, via ConL. Hence, we have:

〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id, 〈PKp,Wp〉〉

177

From packet extension (Lemma 28), we have:

〈p, 〈PK,Wp〉〉 →∗ 〈id, 〈PKp × PK \Wp,Wp〉〉

From permission extension (Lemma 29) and the fact that Wp ⊆ W, we have:

〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp × PK \Wp,W〉〉

Now, note that PK\Wp ⊇ (PKp × PK \Wp)\Wp by normalization’s read-only property

(Lemma 1, part (2)). We will apply the previous two lemmas in a similar fashion,

but so as to work with PKp. That is, we know (by monotonicity, Lemma 24) that:

〈q, 〈(PKp × PK \Wp) \Wp,Wq〉〉 →∗ 〈id, 〈PKq,Wq〉〉

By packet extension (Lemma 28), this means that we have:

〈q, 〈(PKp × PK \Wp),Wq〉〉 →∗ 〈id, 〈PKp × PKq,Wq〉〉

By permission extension (Lemma 29) and the fact that Wq ⊆ W, we have:

〈q, 〈(PKp × PK \Wp),W〉〉 →∗ 〈id, 〈PKp × PKq,W〉〉

We can now take our derivation of 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp × PK \Wp,W〉〉 and

apply SeqEnter and SeqL to find that 〈p; q, 〈PK,W〉〉 →∗ 〈p; q, 〈seq 〈PK,W〉〉〉 and

〈p; q, 〈seq 〈PK,W〉〉〉 →∗ 〈id; q, 〈seq 〈PKp × PK \Wp,W〉〉〉. We then step by SeqR to

〈q, 〈PKp × PK \Wp,W〉〉. We then know that this steps to 〈id, 〈PKp × PKq,W〉〉 by

our analysis of q—and now we see that this is exactly how the concurrent evaluation

stepped.

178

From sequential to concurrent. When going from sequential composition to

concurrent composition, we know that 〈p; q, 〈PK,W〉〉 →∗ 〈id, 〈PKq,W〉〉; in particular:

〈p, 〈PK,W〉〉 →∗ 〈id, 〈PKp,W〉〉

〈q, 〈PKp,W〉〉 →∗ 〈id, 〈PKq,W〉〉

We also know that ` p : (Rp,Wp), so PKp\Wp ⊆ PK\Wp by normalization’s read-only

property (Lemma 1, part (2)). So we can say that PKp = PK′p×PK\Wp for some PK′p.

This PK′p models the actual writes done by p: if p drops its packets, it will be the

empty set; if p doesn’t write at all, it will be the set containing the empty packet (i.e.

one with no fields). We can now apply packet extension (Lemma 28), showing that

〈p, 〈PK \Wq,W〉〉 →∗ 〈id, 〈PK′p,W〉〉. We can find this derivation at write permission

Wp using permission extension (Lemma 29):

〈p, 〈PK \Wq,Wp〉〉 →∗ 〈id, 〈PK′p,Wp〉〉

This gives us the derivations to run on p via ConL.

Now we must treat 〈q, 〈PKp,W〉〉 →∗ 〈id, 〈PKq,W〉〉 to find the steps to run on

q via ConR. If PKp is empty, we can take a shortcut: by normalization (Lemma 1)

we can take a shortcut by Lemma 23 to see that our final output PKq is empty, too.

Then by monotonicity (Lemma 24), we know that q will return some set of packets

PK′′q when run in the concurrent composition. But when we finally run ConExit, we

will multiply PKp × PK′′q = ∅ × PK′′q = ∅, and we are done.

Suppose PK′p isn’t empty, and therefore PKp isn’t empty. We have that

〈q, 〈PKp,W〉〉 →∗ 〈id, 〈PKq,W〉〉

We know that ` q : (Rq,Wq), so PKq \Wq ⊆ PKp \Wq by normalization’s read-only

property (Lemma 1, part (2)). We can therefore say that PKq = PK′q × PKp \Wq for

179

some PK′q. So we have:

〈q, 〈PKp,W〉〉 →∗ 〈id, 〈PK′q × PKp \Wq,W〉〉

By packet extension (Lemma 28), we have:

〈q, 〈PKp \Wp,W〉〉 →∗ 〈id, 〈PK′q,W〉〉

Since PK′p 6= ∅, we know that PK′p\Wp = {⊥}, so PKp\Wp = PK′p×PK\Wp = PK\Wp,

yielding:

〈q, 〈PK \Wp,W〉〉 →∗ 〈id, 〈PK′q,W〉〉

By Lemma 29, we can find this derivation at the write permission Wq, which is enough

to give use the ConR derivation.

It remains to see that PK′p × PK′q = PKq. We can expand:

PKq = PK′q × PKp \Wq

= PK′q × PK′p × PK \Wp \Wq

= PK′q × PK′p × PK \Wp ∪Wq because Wp ∩Wq = ∅

= PK′q × PK′p × ∅ because W = Wp ∪Wq

= PK′q × PK′p

We form up the final derivation for p Wp||Wq q by beginning with ConEnter,

applying the derivations formed above, and then stepping by ConExit, reconstructing

that PK′p × PK′q = PK′

180

Appendix C

Correctness of the Compilation

Algorithms

This section presents the phases of the multipass compilation algorithm described in

Section 4, accompanied by proofs of semantic preservation.

C.1 Single-table Compilation

This section presents the full proofs and supporting lemmas of the theorems in Sec-

tion 4.1.

Definition 22 (NetKAT Sub-languages). We define the following sub-languages of

NetKAT .

• p ∈ NetKAT −(dup,sw←) if p does not contain dup or sw← n.

• p ∈ NetKAT −(dup,sw←,∗) if p does not contain dup or sw← n or p*.

• p ∈ NetKAT −(dup,sw←,∗,sw) if p does not contain dup or sw← n or p* or sw = n.

• p ∈ NetKAT −(sw) if p has the form
∑
i

sw = i; pi and for i : 1..n, pi ∈

NetKAT −(dup,sw←,∗,sw).

181

We call policies p ∈ NetKAT −dup,sw← user policies. This is the set of policies

that NetKAT programmers may write and that we an implement. We call policies

p ∈ NetKAT sw switch normal form policies. Such policies have one component that

is specialized to each switch in the network. Compilation is then a series of steps,

each refining or eliminating a fragment of the full NetKAT language.

1. Star elimination. Transform a user policy into an equivalent user policy

without Kleene star.

2. Switch specialization. Transform a star-free user policy into switch normal

form.

3. OpenFlow normal form. Transform a policy in switch normal form into

OpenFlow normal form.

Policies in switch normal form are themselves collections of sub-policies, joined by

union, each of which is a star-free user policy (i.e. does not contain dup, Kleene star,

or modifications to the sw field). Note that each of these policy fragments coincides

with a table-free, concurrency-free Concurrent NetCore policy.

C.1.1 Star Elimination

Lemma 31 (Star Elimination). If p ∈ NetKAT −(dup,sw←), then there exists p′ ∈

NetKAT −(dup,sw←,∗) and p ≡ p′.

Proof. The proof begins by showing that p′ can be obtained from the normal form

used in the completeness theorem. More specifically, let p′′ be the policy obtained

from p by the normalization construction of Lemma 7 in [2]. By construction, dup

can only appear in the normal form of an expression already containing dup, therefore

p′′ does not contain dup. Moreover, R(p′′) ⊆ I and p′′ does not contain dup, therefore

R(p′′) ⊆ At;P . Consequently, p′′ does not contain Kleene star.

182

Let us now prove that any assignment of the form sw ← swi in p′′ is preceded in

the same term by the corresponding test sw = swi. Because p does not contain any

assignment of the form sw ← sw i, it commutes with any test of the form sw = sw i,

and therefore p′′ also commutes with any test of the form sw = sw i. p′′ can be

written as a sum of α;p for some atoms α and complete assignments p. Suppose for

a contradiction that term, α contains a test sw = sw i, and p contains an assignment

sw← sw j, with sw i 6= sw j. Then

α; (sw = sw i); p
′′; (sw = sw j) ≥ α; p 6= 0

α; (sw = sw j); p
′′; (sw = sw i) = 0

but those two terms are also equal, which is a contradiction.

Therefore any assignment of the form sw ← swi in p′′ is preceded, in the same

term, by the corresponding test sw = swi, and can be removed using axiom PA-

Filter-Mod to produce the desired p′. Tests and assignments to other fields than sw

could appear in between, but we can use the commutativity axioms PA-Mod-Mod-

Comm and PA-Mod-Filter-Comm to move the assignment sw ← swi to just after

the test sw = swi.

C.1.2 Switch Normal Form

First, we show that any policy in NetKAT −(dup,sw←,∗) can be specialized to a given

switch.

Lemma 32 (Switch Specialization). If p ∈ NetKAT −(dup,sw←,∗), then for all switches

sw i, there exists p′ ∈ NetKAT −(dup,sw←,∗,sw) such that sw = sw i; p ≡ sw = sw i; p
′.

183

Proof. Let g be the unique homomorphism of NetKAT defined on primitive programs

by:

g(sw = sw) ,


id if sw = sw i

drop otherwise

g(f ← v) , f ← v

g(dup) , dup

For every primitive program element x of NetKAT −(dup,sw←,∗), we have both:

sw = sw i;x ≡ g(x); sw = sw i

g(x); sw = sw i ≡ sw = sw i; g(x)

Hence, applying Lemma 4.4 in [3] twice shows:

sw = sw i; p ≡ g(p); sw = sw i

g(p); sw = sw i ≡ sw = sw i; g(p)

By the definition of g, any occurrence of sw = v in p is replaced by either id or drop in

g(p). Moreover, since p ∈ NetKAT −(dup,sw←,∗), it follows that g(p) does not contain

any occurrence of sw = v and since p′ = g(p) ∈ NetKAT −(dup,sw←,∗,sw) we also have

sw = sw i; p ≡ sw = sw i; p
′

As there are finitely many switches in a network (codified in Axiom PA-Match-

All), we can use Lemma 32 to show that any star-free user policy can be put into

switch normal form.

184

ONF Action Sequence a ::= id | f ← n; a
ONF Action Sum as ::= drop | a+ as
ONF Predicate b ::= id | f = n; b
ONF ` ::= as | if b then as else `

Figure 4.2: OpenFlow Normal Form.

Lemma 33 (Switch-Normal-Form). If p ∈ NetKAT −(dup,sw←,∗) then there exists

p′ ∈ NetKAT sw such that p ≡ p′.

Proof.

Assertion Reasoning

p
≡ id; p KA-One-Seq.
≡ (

∑
i
sw = i); p PA-Match-All.

≡
∑
i

(sw = i; p) KA-Seq-Dist-R.

≡
∑
i

(sw = i; pi) where pi ∈ NetKAT −dup,sw←,*,sw Lemma 32.

C.1.3 OpenFlow Normal Form

Finally, we show that any policy in switch normal form is equivalent to a policy in

OpenFlow normal form.

Notice that the definition of OpenFlow normal form (ONF) in Figure 4.2 is nearly

identical to the definition of switch normal form. The key difference lies in the form of

the switch-local policy fragments. In ONF, these policy fragments must be in ONF

local form. Hence, we show how to transform a switch-local policy fragment into

ONF local form.

The proof proceeds by induction on the structure of the NetKAT policy. We

will see that for each combinator, two policy fragments in ONF local form can be

joined to produce a policy in ONF local form. After defining several lemmas useful

185

throughout the remainder of the section, we show that parallel composition, sequential

composition, and predicate compilation are all sound. We conclude by showing stating

and proving the full compiler soundness theorem.

Coq-based Lemmas. Damien Pous has released a sound and complete decision

procedure for Kleene algebras with tests, implemented in the Coq theorem prover 1.

For several lemmas that rely on lengthy program transformations using only the

standard KAT axioms, we appeal to this decision procedure. The Coq code for each

lemma is reproduced below.

Lemma atom_plus_onf_is_onf ‘{L: laws} n (b : tst n) (p q r : X n n):

p + [b];q + [!b];r == [b];(p + q) + [!b];(p + r).

Proof. kat. Qed.

Lemma union_is_ite_nf ‘{L: laws} n (b1 b2 : tst n) (p1 p2 q : X n n):

[b1];([b2];p1 + [!b2];p2) + [!b1];q ==

[b1];[b2];p1 + [b1];[!b2];p2 + [!b1];[b2];q + [!b1];[!b2];q.

Proof. kat. Qed.

Lemma demorgans ‘{L: laws} n (b1 b2 : tst n) (p1 p2 q : X n n):

[!(b1 \cap b2)];p1 == [!b1];p1 + [!b2];p1.

Proof. kat. Qed.

Lemma ite_nf_is_onf ‘{L: laws} n (b1 b2 : tst n) (p1 p2 q : X n n):

[b1];[b2];p1 + [b1];[!b2];p2 + [!b1];[b2];q + [!b1];[!b2];q ==

[b1 \cap b2];p1 + [!(b1 \cap b2)];([b1];p2 + [!b1];q).

Proof. kat. Qed.

Lemma nested_onf_is_onf ‘{L: laws}

1http://perso.ens-lyon.fr/damien.pous/ra

186

http://perso.ens-lyon.fr/damien.pous/ra

n

(b1 b2 : tst n)

(p1 p2 q : X n n):

[b1];([b2];p1 + [!b2];p2) + [!b1];q ==

[b1 \cap b2];p1 + [!(b1 \cap b2)];([b1];p2 + [!b1];q).

Proof. kat. Qed.

Lemma union_onf_is_onf ‘{L: laws}

n

(b1 b2 : tst n)

(a1 a2 p’ q’ : X n n):

[b1];a1 + [!b1];p’ + [b2];a2 + [!b2];q’ ==

[b1 \cap b2];(a1 + a2) + [!(b1 \cap b2)];([b1];(a1 + q’)

+ [!b1];(p’ + [b2];a2 + [!b2];q’)).

Proof. kat. Qed.

Lemma joined_policies ‘{L: laws} n (s1 s2 t : X n n):

((s1 + s2); t)^* == ((s1; t)^* + (s2; t)^*)^*.

Proof. kat. Qed.

Helper lemmas. Several subgoals appear repeatedly in this last part of the proof

of compiler correctness. The first simply observes that every test is either true or false

(BA-Excluded Middle), and so every program may be broken into a sum, wherein

either the test or its negation is sequenced with the program.

Lemma 34 (Predicate Expansion). For all predicates a, b and policies p, b; p ≡

a; b; p+ ¬a; b; p.

Proof.

187

Assertion Reasoning

1 b; p
2 ≡ id; b; p KA-One-Seq
3 ≡ (a+ ¬a); b; p BA-Excluded-Middle
Goal ≡ a; b; p+ ¬a; b; p KA-Seq-Dist-R.

Consider ONF as a series of nested if statements for a moment. During the proofs,

we will often conclude that the body of both branches of the topmost if statement

are themselves nested if statements in ONF. In order to show that the expression as

a whole is indeed in ONF, we must show that the structure is equivalent to a single

series of nested if statements.

Lemma 35 (Nested ONF is ONF). For all ONF predicates a and policies p, q in

ONF, there exists a policy r in ONF such that r ≡ a; p+ ¬a; q.

Proof. By induction on the structure of p.

Case 1. We have p = as1, and the result is immediate.

Case 2. We have p = b; as+ ¬b; q.

Assertion Reasoning

a; (b; as+ ¬b; q) + ¬a; p′

≡ (a; b); as+ ¬(a; b); (a; q + ¬a; p′) Coq Lemma nested onf is onf.

Applying the induction hypothesis to (a; q + ¬a; p′) yields r′ in ONF. Hence, our

goal is satisfied with (a; b); as+ ¬(a; b); r′.

Finally, there are several commutativity conditions that are essential to reasoning

about NetKAT program transformations.

Lemma 36 (Negative Field Commutativity). For all fields f1, f2 and values n1, n2

such that f1 6= f2, f1 ← n1;¬f2 = n2 ≡ ¬f2 = n2; f1 ← n1.

188

Proof. By PA-Mod-Mod-Comm, we have f1 ← n1; f2 = n2 ≡ f2 = n2; f1 ← n1. The

desired result then follows from [26, Lemma 2.3.1].

Lemma 37 (Action Atom Seq Filter Commutativity). For all ONF action sequences

a1, fields f , and values n, one of the following holds:

• a1; f = n ≡ f = n; a1 and a1;¬f = n ≡ ¬f = n; a1,

• a1; f = n ≡ a1 and a1;¬f = n ≡ drop, or

• a1; f = n ≡ drop and a1;¬f = n ≡ a1.

Proof. By induction on the structure of a1. We have two cases. The base case,

a1 ≡ id, is trivial. We continue with the induction case, a1 ≡ f1 ← n1; a
′
1. Applying

the induction hypothesis to a′1, f , and n yields three new cases:

Case 1. We have f1 ← n1; a
′
1; f = n ≡ f1 ← n1; f = n; a′1 and f1 ← n1; a

′
1;¬f = n ≡

f1 ← n1;¬f = n; a′1. There are three cases:

Case 1a. If f1 6= f , then f1 ← n1; f = n; a′1 ≡ f = n; f1 ← n1; a
′
1 by PA-Mod-Filter-

Comm. By Lemma 36, we also have f1 ← n1;¬f2 = n2 ≡ ¬f2 = n2; f1 ← n1.

Case 1b. If f1 ≡ f and n ≡ n1, then f1 ← n1; f = n; a′1 ≡ f1 ← n1; a
′
1 by PA-Mod-

Filter. We also have:

Assertion Reasoning

1 f1 ← n1;¬f = n; a′1
2 ≡ f1 ← n1; f = n;¬f = n; a′1 PA-Mod-Filter.
3 ≡ f1 ← n1; drop; a′1 BA-Contra.
Goal ≡ drop KA-Zero-Seq and KA-Seq-Zero.

Case 1c. If f1 ≡ f and n 6= n1, then f1 ← n1; f = n; a′1 ≡ drop by PA-Mod-Filter

and PA-Contra. We also have:

189

Assertion Reasoning

1 f ← n1;¬f = n; a′1
2 ≡ drop + f ← n1;¬f = n; a′1 KA-Plus-Zero,

KA-Plus-Comm.
3 ≡ f ← n1; drop; a′1 + f ← n1;¬f = n; a′1 KA-Seq-Zero,

KA-Zero-Seq.
4 ≡ f ← n1; f = n1; f = n; a′1 + f ← n1;¬f = n; a′1 PA-Contra.
5 ≡ f ← n1; f = n; a′1 + f ← n1;¬f = n; a′1 PA-Mod-Filter-Comm.
6 ≡ f ← n1; (f = n+ ¬f = n); a′1 KA-Seq-Dist-L,

KA-One-Seq,
KA-Seq-Dist-R.

Goal ≡ f ← n1; a
′
1 BA-Excluded-Middle,

KA-Seq-One.

Case 2. We know that

• a′1; f = n ≡ a′1, and

• a′1;¬f = n ≡ drop.

Hence, by substitution and KA-Seq-Zero,

• f1 ← n1; a
′
1; f = n ≡ f1 ← n1; a

′
1, and

• f1 ← n1; a
′
1;¬f = n ≡ drop.

Case 3. We know that

• a′1; f = n ≡ drop, and

• a′1;¬f = n ≡ a′1.

Hence, by substitution and KA-Seq-Zero,

• f1 ← n1; a
′
1; f = n ≡ drop, and

• f1 ← n1; a
′
1;¬f = n ≡ f1 ← n1; a

′
1.

Lemma 38 (Action Atom Seq Predicate Commutativity). For all ONF action se-

quences a1 and ONF predicates b1, one of three cases holds:

190

• there exists an ONF predicate b2 such that a1; b1 ≡ b2; a1 and a1;¬b1 ≡ ¬b2; a1,

• a1; b1 ≡ a1 and a1;¬b1 ≡ drop, or

• a1; b1 ≡ drop and a1;¬b1 ≡ a1.

Proof. By induction on the structure of b1. The base case, b1 ≡ id, is trivial, leaving

the inductive case b1 ≡ f = n; b′1. We have a1; f = n; b′1. Applying Lemma 37 to

a1; f = n yields three cases.

Case 1. We have that a1; f = n ≡ f = n; a1. Hence, a1; f = n; b′1 ≡ f = n; a1; b
′
1 and

the goal follows from an application of the induction hypothesis.

The same reasoning resolves the negative case, where a1;¬f = n ≡ ¬f = n; a1.

Case 2. We have that a1; f = n ≡ a1. Hence, a1; f = n; b′1 ≡ a1; b
′
1 and the goal

follows from an application of the induction hypothesis.

The negative case, where a1;¬f = n ≡ drop, follows from rewriting and KA-Seq-

Zero.

Case 3. We have that a1; f = n ≡ drop. Hence, a1; f = n; b′1 ≡ drop by KA-Seq-Zero.

The negative case, where a1;¬f = n ≡ a1, proceeds as follows. By rewriting, we

have a1;¬f = n; b′1 ≡ a1; b
′
1 and the goal follows from an application of the induction

hypothesis.

Parallel Composition Preserves ONF. In this section, we show that the parallel

composition of two policies in ONF is itself equivalent to a policy in ONF. The proof

proceeds by mutual induction on the structure of both subpolicies, and the section

presents supporting lemmas leading up to the final result.

Lemma 39 (Action Plus Action is ONF). For all ONF action sums as1 and as2,

there exists an ONF action sum as3 such that as1 + as2 ≡ as3.

191

Proof. Both as1 and as2 can take one of two forms, drop or a + as′, leading to four

cases. The goal follows immediately from KA-Plus-Zero in all but the final case.

Case 4. We have as1 ≡ a1 + as′1 and as2 ≡ a2 + as′2. as3 ≡ a1 + a2 + as′1 + as′2, which

can be put into normal form via list concatenation.

Lemma 40 (Action Plus ONF is ONF). For all ONF action sums as1 and policies

p ≡ b; as2 + ¬b; q in ONF, there exists a policy r in ONF such that r ≡ as1 + p.

Proof. By induction on p.

Case 1. We have p ≡ as2. The goal follows immediately from Lemma 39.

Case 2. We have p ≡ b; as2 + ¬b; q.

Assertion Reasoning

1 as1 + b; as2 + ¬b; q
2 ≡ b; as1 + ¬b; as1 + b; as2 + ¬b; q Lemma 34.
3 ≡ (b; as1) + (b; as2) + (¬b; as1) + (¬b; q) KA-Plus-Comm.
4 ≡ b; (as1 + as2) + ¬b; (as1 + q) KA-Seq-Dist-L.

The goal then follows from an application of the induction hypothesis to (as1 +

q).

Lemma 41 (Parallel Composition Preserves ONF). For all policies p, q in OpenFlow

normal form, there exists r such that p+ q ≡ r and r is in OpenFlow normal form.

Proof. By induction on p and split in to cases based on the structure of q.

Case 1. We have p ≡ as1 and q ≡ as2, and r ≡ as1 + as2. The goal follows from

Lemma 39.

Case 2. We have p ≡ as1 and q ≡ b; as2 + ¬b; q′, and r ≡ as1 + b; as2 + ¬b; q′. The

goal follows from Lemma 40.

192

Case 3. We have p ≡ b; as1 + ¬b; p′ and q ≡ as2, and r ≡ b; as1 + ¬b; p′ + as2. The

goal follows from Lemma 40 and KA-Plus-Comm.

Case 4. We have p ≡ b1; as1 + ¬b1; p′ and q ≡ b2; as2 + ¬b2; q′, and r ≡ b1; as1 +

¬b1; p′ + b2; as2 + ¬b2; q′.

Assertion Reasoning

1 b1; as1 + ¬b1; p′ + b2; as2 + ¬b2; q′
2 (b1; b2); (as1 + as2)

+ ¬(b1; b2); (b1; (as1 + q′) + ¬b1; (p′ + b2; as2 + ¬b2; q′)) Coq Lemma
union onf is onf.

3 (b1; b2); (as1 + as2)
+ ¬(b1; b2); (b1; r1 + ¬b1; (p′ + b2; as2 + ¬b2; q′)) (for some r1 in ONF)

by Lemma 40.
4 (b1; b2); (as1 + as2)

+ ¬(b1; b2); (b1; r1 + ¬b1; (p′ + q)) Substitute q.
5 (b1; b2); (as1 + as2)

+ ¬(b1; b2); (b1; r1 + ¬b1; r2) IH.
6 (b1; b2); (as1 + as2) + ¬(b1; b2); r3 Lemma 35.

Sequential Composition Preserves ONF. In this section, we show that the

sequential composition of two policies in ONF is itself equivalent to a policy in ONF.

The proof proceeds by mutual induction on the structure of both subpolicies and the

structure of ONF action sums in the left-hand policy. The section presents supporting

lemmas leading up to the final result.

Lemma 42 (Conjunct Seq Conjunct is ONF). For all ONF action sequences a1, a2,

there exists an ONF action sequence a3 ≡ a1; a2.

Proof. By induction on the structure of a1.

Case 1. We have a1 ≡ id and a3 ≡ id; a2 ≡ a2 by KA-One-Seq.

Case 2. We have a1 ≡ f ← n; a′1 and a3 ≡ (f ← n; a′1); a2.

193

Assertion Reasoning

1 a3 ≡ (f ← n; a′1); a2
2 ≡ f ← n; a′1; a2 KA-Seq-Assoc
Goal ≡ f ← n; a′3 IH

Lemma 43 (Conjunct Seq Action is ONF). For all ONF action sequences a and

ONF action sums as1, there exists an ONF action sum as2 ≡ a; as1.

Proof. We begin with induction on as1. The first case is trivial: as2 ≡ a; drop ≡ drop

by KA-Seq-Zero. In the second case, as1 ≡ a1 + as′1.

Assertion Reasoning

1 as2 ≡ a; (a1 + as′1)
2 ≡ a; a1 + a; as′1 KA-Seq-Dist-L.
3 ≡ a2 + a; as′1 Lemma 42.
Goal ≡ a2 + as′2 IH

Lemma 44 (Action Seq Action is ONF). For all ONF action sums as1 and as2, there

exists an ONF action sum as3 such that as1; as2 ≡ as3.

Proof. By induction on as1. In the first case, as1 ≡ drop, and the goal follows from

KA-Zero-Seq. In the latter case, as1 ≡ a1 + as′1.

Assertion Reasoning

1 as3 ≡ (a1 + as′1); as2
2 ≡ a1; as2 + as′1; as2 KA-Seq-Dist-R.
3 ≡ as31 + as′1; as2 Lemma 43.
4 ≡ as31 + as32 IH.
Goal ≡ as′3 Lemma 39.

Lemma 45 (Action Atom Seq ONF is ONF). For all ONF action sequences a1 and

policies p in ONF, there exists a policy q in ONF such that q ≡ a1; p.

Proof. By induction on p. The base case, p ≡ as, is discharged by Lemma 43. That

leaves the inductive case, p ≡ b; as+ ¬b; p′ and q ≡ a1; (b; as+ ¬b; p′).
194

Assertion Reasoning

1 q ≡ a1; (b; as+ ¬b; p′)
2 ≡ a1; b; as+ a1;¬b; p′ KA-Seq-Dist-L.

Applying Lemma 38 to a1 and b yields three cases:

Case 1. We have that a1; b ≡ b; a1 and a1;¬b ≡ ¬b; a1. After rewriting line 2 from

the proof table above, we have:

Assertion Reasoning

1 b; a1; as+ ¬b; a1; p′
2 b; a1; as+ ¬b; q′ (for some q′ in ONF) by IH
2 b; as2 + ¬b; q′ (for some as2) by Lemma 43

Case 2. We have that a1; b ≡ a1 and a1;¬b ≡ drop. After rewriting, we have:

Assertion Reasoning

1 a1; as+ drop; p′

2 a1; as KA-Zero-Seq and KA-Plus-Zero.
3 as2 (for some as2) by Lemma 43

Case 3. We have that a1; b ≡ drop and a1;¬b ≡ a1. After rewriting, we have:

Assertion Reasoning

1 drop; as+ a1; p
′

2 a1; p
′ KA-Zero-Seq and KA-Plus-Zero.

3 q′ by IH

Lemma 46 (Action Seq ONF is ONF). For all ONF action sums as and policies p

in ONF, there exists a policy q in ONF such that q ≡ as; p.

195

Proof. By induction on the structure of as. The base case, as = drop, is trivial. This

leaves the inductive case, where as = a+ as′.

Assertion Reasoning

1 (a+ as′); p
2 ≡ a; p+ as′; p KA-Seq-Dist-R.
3 ≡ r + as′; p Lemma 45.
4 ≡ r + q′ IH.

The goal then follows from applying Lemma 41.

Lemma 47 (Sequential Composition Preserves ONF). For all policies p, q in Open-

Flow normal form, there exists r such that p; q ≡ r and r is in OpenFlow normal

form.

Proof. By induction on p.

Case 1. We have p = as1 and r ≡ as1; q. The result follows from Lemma 46.

Case 2. We have p = b; as1 + ¬b; p′ and r ≡ (b; as1 + ¬b; p′); q.

Assertion Reasoning

1 (b; as1 + ¬b; p′); q
2 ≡ b; as1; q + ¬b; p′; q KA-Seq-Dist-R.
3 ≡ b; r1 + ¬b; p′; q (for some r1 in ONF) by Lemma 46.
4 ≡ b; r1 + ¬b; r2 IH.

The result then follows from applying Lemma 35.

Predicate Compilation is Sound. We can also see that NetKAT predicates have

equivalents in ONF.

Lemma 48 (Filter is ONF). For all policies p = a, there exists a policy q in ONF

such that p ≡ q.

196

Proof. By induction on the structure of a. The cases of id and drop are immediate.

Case: f = n.

Assertion Reasoning

1 f = n
2 ≡ f = n+ drop KA-Plus-Zero.
Goal ≡ f = n; id + +¬f = n; drop KA-Seq-Zero, KA-Seq-One.

Case: ¬b.

Assertion Reasoning

1 ¬b
2 ≡ ¬b; id KA-Seq-One.
3 ≡ drop + ¬b; id KA-Plus-Zero, KA-Plus-Comm.
Goal ≡ b; drop + ¬b; id KA-Seq-Zero.

Case: b + c. From the induction hypothesis, we have q ≡ q′ + q′′. The result then

follows from an application of Lemma 41.

Case: b; c. From the induction hypothesis, we have q ≡ q′; q′′. The result then follows

from an application of Lemma 47.

Compiler Soundness. Finally, we show that any switch fragment of a policy in

switch normal form has an equivalent policy in OpenFlow normal form. Hence, any

user policy has an equivalent policy in OpenFlow normal form.

Lemma 49. Switch-local Compilation

If p ∈ NetKAT −(dup,sw←,*,sw) then there exists a policy p′ such that p ≡ p′ and

p′ ∈ ONF.

Proof. By induction on the structure of p.

Case 1. We have p = a. The goal follows from applying Lemma 48.

197

Case 2. We have p = f ← n (and f 6= sw). Applying KA-Seq-One yields p ≡ f ←

n; id, which satisfies our goal.

Case 3. We have p = q + r. Applying the induction hypothesis to q and r yields

p ≡ q′ + r′, after substitution. The goal then follows from Lemma 41.

Case 4. We have p = q; r. Applying the induction hypothesis to q and r yields

p ≡ q′; r′, after substitution. The goal then follows from Lemma 47.

Case 5. We have p = p′*. This case is inconsistent with the hypothesis (p′* 6∈

NetKAT −dup,sw←,*,sw).

Theorem 8 (User policies can be compiled to ONF). For all user policies p ∈

NetKAT −dup,sw← there exists a policy p′ ∈ ONF such that p ≡ p′.

Proof. By Lemmas Star-Elimination, Switch-Normal-Form and Switch-Local-

Compilation.

C.1.4 Optimizations

Lemma 50 (If Compress). if b1 then as else if b2 then as else ` ≡ if b1 + b2 then as else `

Proof. By desugaring the if statements and then applying boolean algebra and dis-

tributivity axioms.

Lemma 51. Fall-through Elimination

If b1 ≤ b2 then if b1 then as else if b2 then as else ` ≡ if b2 then as else ` .

Proof.

if b1 then as else if b2 then as else `

≡ if b1 + b2 then as else ` by If Compress

≡ if b2 then as else ` by b1 ≤ b2

198

C.1.5 Compiling to Physical Tables

Lemma 52. For all crossbar policies c, if c = if action = v then p else c′, then for all

v′ 6= v, ¬action = v′; c′ ≡ c′ ≡ c′;¬dov = 1.

Proof. Induction on c′, relying on Lemma 56 and the fact that v does not appear in

a predicate in c′ by construction of c′.

Lemma 53. For all action policies t, if t = if action = v then p else id || t′, then for

all v′ 6= v, ¬action = v′; t′ ≡ t′. Similarly, if v = v′, then action = v′; t′ ≡ id.

Proof. Induction on t′, relying on Lemma 56 and the fact that v does not appear in

a predicate in t′ by construction of t′.

Lemma 54 (Single-table compilation from ONF to physical tables is semantics pre-

serving). For all ONF tables ons without packet duplication, let m, c,, and t be match,

crossbar, and action stages such that m; c; t = crossbar(ons), and let fs be the fresh

metadata fields introduced by crossbar, with z = Πf ∈fs f ← 0 zeroing these fields. The

following equivalence holds.

z;m; c; t;≡; z; ons; z

Proof. Induction on ons. The base case is immediate.

Case ons = if a then p else ons′. From the application of crossbar, we have that

• m′; c′; t′ = crossbar(ons′)

• m; c; t = if a then action← map(p) else m; if action = map(p) then domap(p) ←

1 else c; if domap(p) = 1 then p else t

From the IH, we have that m′; c′; t′ ≡ ons′.

199

Assertion Reasoning

m; c; t
≡ if a then action← v else m;

if action = v then dov ← 1 else c;
if dov = 1 then p else id || t [Substitution]

≡ (a; action← v + ¬a;m);
(action = v; dov ← 1 + ¬action = v; c);
if dov = 1 then p else id || t [Desugar]

≡ (a; action← v; action = v; dov ← 1
+ a; action← v;¬action = v; c
+ ¬a;m; action = v; dov ← 1
+ ¬a;m;¬action = v; c);

if dov = 1 then p else id || t [Dist-L, Dist-R]
≡ (a; action← v; dov ← 1
+ drop
+ ¬a;m; action = v; dov ← 1
+ ¬a;m;¬action = v; c);

if dov = 1 then p else id || t [Mod-Match, BA-Contra]
≡ (a; action← v; dov ← 1
+ drop
+ drop
+ ¬a;m;¬action = v; c);

if dov = 1 then p else id || t [v is unique, Mod-Match]
≡ a; action← v; dov ← 1; if dov = 1 then p else id || t
+ ¬a;m;¬action = v; c; if dov = 1 then p else id || t [Dist-R]
≡ a; action← v; dov ← 1; p
+ ¬a;m;¬action = v; c; if dov = 1 then p else id || t [Mod-Match, Lemmas 56, 53]
≡ a; action← v; dov ← 1; p
+ ¬a;m; c;¬dov = 1; if dov = 1 then p else id || t [Lemma 52]
≡ a; action← v; dov ← 1; p
+ ¬a;m; c;¬dov = 1; t [BA-Contra]
≡ a; action← v; dov ← 1; p
+ ¬a;m; c; t [Lemma 53]

Substituting equals for equals, it then follows that

z;m; c; t; z ≡ z; (a; action← v; dov ← 1; p+ ¬a;m; c; t); z

Assertion Reasoning

≡ z; (a; action← v; dov ← 1; p+ ¬a;m; c; t); z
≡ z; a; action← v; dov ← 1; p; z + z;¬a;m; c; t; z [Dist-L, Dist-R]
≡ z; a; action← v; dov ← 1; z; p+ z;¬a;m; c; t; z [Freshness]

200

≡ z; a; action← v; z; p+ z;¬a;m; c; t; z [Mod-Mod]
≡ z; a; z; p+ z;¬a;m; c; t; z [Mod-Mod]
≡ z; a; p; z + z;¬a;m; c; t; z [Freshness]
≡ z; a; p; z + ¬a; z;m; c; t; z [Freshness]
≡ z; a; p; z + ¬a; z; ons′; z [Substitution (IH)]
≡ z; a; p; z + z;¬a; ons′; z [Freshness]
≡ z; (a; p+ ¬a; ons′); z [Dist-L, Dist-R]
≡ z; (if a then p else ons′); z [Sugar]

C.2 Pipeline Compilation

This section presents the phases of the pipeline compilation algorithms described in

Section 4.2, accompanied by proofs of semantic preservation. There are two minor

departures from that presentation:

• In this presentation of multicast refactoring, we replace s with an annotated

type τ ∈ P(Field) × P(Field) × Int, where the final integer field represents the

number of multicast occurrences in future updates to a table variable.

• In this presentation of table fitting, we use an additional annotation on tables

to describe the expected number of rules, rather than supplying an auxiliary

map.

C.2.1 Useful Lemmas

Lemma 55. For all predicates a and b, ¬a; b ≡ ¬a+ ¬b.

Proof.

(1) First we show that ab + (-a + -b) == 1.

ab + -a + -b

[Seq-1, 1-Seq]

201

ab + -a1 + 1-b

[BA-Excl-Mid]

ab + -a(b + -b) + (a + -a)-b

[Seq-Dist-R]

ab + -a(b + -b) + a-b + -a-b

[Seq-Dist-L]

ab + -ab + -a-b + a-b + -a-b

[Plus-Comm, Plus-Idem]

ab + -ab + a-b + -a-b

[Seq-Dist-L, Seq-Dist-R]

(a + -a)(b + -b)

[BA-Excl-Mid]

11

[BA-Seq-Idem]

1

(2) Next, we show that ab(-a + -b) == 0.

ab(-a + -b)

[Seq-Dist-L]

ab-a + ab-b

[BA-Contra]

ab-a + a0

[Seq-Zero, Plus-Zero]

ab-a

[BA-Seq-Comm]

a-ab

202

[BA-Contra]

0b

[Zero-Seq]

0

Now, we have:

-(ab)

[Seq-One]

-(ab)1

[Substitution (1)]

-(ab)(ab + -a + -b)

[Seq-Dist-L]

-(ab)ab + -(ab)-a + -(ab)-b

[BA-Contra]

0 + -(ab)-a + -(ab)-b

[Seq-Dist-L]

0 + -(ab)(-a + -b)

[Substitution (2)]

ab(-a + -b) + -(ab)(-a + -b)

[Seq-Dist-R]

(ab + -(ab))(-a + -b)

[BA-Contra]

-a + -b

Lemma 56. For all fields f and values v, v′, if v 6= v′ then f = v;¬f = v′ ≡ f = v.

203

Proof.

f = v; -(f = v’)

f = v; -(f = v’) + f = v; -(f = v)

f = v; (-(f = v’) + -(f = v))

f = v; -(f = v’; f = v)

f = v; -(drop)

f = v; -(drop); id

f = v; (-(drop) + drop)

f = v; id

f = v

C.2.2 Refactoring Parallel Composition

Current and proposed switching architectures support a limited form of multicast—

packets may be duplicated at only a limited number of stages. This section describes a

compilation that restructures parallel composition to target the RMT pipeline. There

are three stages:

• Analyze. The first step is to analyze the given policy to determine the number

of metadata fields required to compile it.

• Compile multicast. The second step refactors the policy to consolidate packet

duplication to a single stage.

• Fit to tables. The final step fits a refactored policy to a set of tables in

hardware.

204

Definition 23.

Let r range over concurrent NetCore terms excluding parallel composition.

predicate sequences t ::= f = 1 | t; f = 1

assignment sequences s ::= id | s; f ← 1

assignment sums m ::= drop | m+ x : τ | m+ s

if statement sequences n ::= x : τ | n; r | n; if t then r else id

zeroing assignment sequences z ::= id | z; f ← 0

For the sake of presentation, we repeat several pieces of compilation machinery here.

Table bindings b ∈ Table→ R-Fragment Policy

Closing substitutions T ∈ B→ Policy→ Policy

Binding transformers θ ∈ B→ B

Table bindings b represent updates to these tables—an SDN controller can be thought

of as emitting a sequence of table bindings. One might think of the first table binding

as initializing the tables in a policy, and subsequent bindings as installing new rules

to each table. We write Tb p to replace tables in the policy p with corresponding

values drawn from b.

Lemma 57 (Qualification produces well-formed egress stages). For all egress stages

n1 and n2, predicates a, and table bindings b, if

• n2 = qualify a n1, and

• a commutes with all atomic operations in Tb n1,

then

Tb (if a then n1 else id) ≡ Tb n2.

205

Proof. The proof proceeds by induction on n1.

Case n1 = id. Immediate from the definitions of qualify and if statements.

Case n1 = x : τ . We immediately have that n2 = if a then (x : τ) else id, from the

definition of qualify.

Case n1 = n; r. We have that n2 = (qualify a n); if a then r else id.

Assertion Reasoning

Tb (qualify a n); if a then r else id
≡ Tb (qualify a n);Tb if a then r else id Definition of T .
≡ Tb if a then n else id;Tb if a then r else id IH.
≡ Tb if a then n else id; if a then r else id Definition of T .
≡ Tb (a;n+ ¬a; id); (a; r + ¬a; id) Desugar if statements.
≡ Tb a;n; a; r + ¬a; id; a; r + a;n;¬a; id + ¬a; id;¬a; id Dist-L, Dist-R.
≡ Tb a; a;n; r + ¬a; id; a; r + a;¬a;n; id + ¬a; id;¬a; id KAT-Commute.
≡ Tb a;n; r + ¬a; id; a; r + a;¬a;n; id + ¬a; id BA-Seq-Idem.
≡ Tb a;n; r + drop + drop + ¬a; id BA-Contra.
≡ Tb a;n; r + ¬a; id KA-Plus-Zero.
≡ Tb if a then n; r else id Sugar if statements.

Case n1 = n; if c then r else id. We have that n2 = (qualify a n); if a; c then r else id.

Assertion Reasoning

Tb (qualify a n); if a; c then r else id
≡ Tb (qualify a n);Tb if a; c then r else id Definition of T .
≡ Tb if a then n else id;Tb if a; c then r else id IH.
≡ Tb if a then n else id; if a; c then r else id Definition of T .
≡ Tb (a;n+ ¬a; id); (a; c; r + ¬(a; c); id) Desugar if statements.
≡ Tb a;n; a; c; r + ¬a; id; a; c; r

+a;n;¬(a; c); id + ¬a; id;¬(a; c); id Dist-L, Dist-R.
≡ Tb a;n; a; c; r + a;n;¬(a; c); id + ¬a; id;¬(a; c); id BA-Contra,

KA-Seq-One,
KA-Plus-Zero.

≡ Tb a;n; c; r + a;n;¬(a; c); id + ¬a; id;¬(a; c); id KAT-Commute,
BA-Seq-Idem.

≡ Tb a;n; c; r + a;n; (¬a+ ¬c); id + ¬a; id; (¬a+ ¬c); id De Morgan’s law.
≡ Tb a;n; c; r + a;n;¬a; id + a;n;¬c; id

+¬a; id;¬a; id + ¬a; id;¬c; id Dist-L, Dist-R.
≡ Tb a;n; c; r + a;n;¬c; id + ¬a; id;¬a; id + ¬a; id;¬c; id KAT-Commute,

BA-Contra,
KA-Plus-Zero.

≡ Tb a;n; c; r + a;n;¬c; id + ¬a; id + ¬a; id;¬c; id BA-Seq-Idem.

206

≡ Tb a;n; c; r + a;n;¬c; id + ¬a; (c+ ¬c); id + ¬a; id;¬c; id KA-Seq-One,
BE-Excl-Mid.

≡ Tb a;n; c; r + a;n;¬c; id + ¬a; c; id + ¬a;¬c; id + ¬a; id;¬c; id Dist-L, Dist-R.
≡ Tb a;n; c; r + a;n;¬c; id + ¬a; c; id + ¬a;¬c; id KA-Seq-One,

KA-Plus-Idem.
≡ Tb a;n; c; r + a;n;¬c; id + ¬a; (c+ ¬c); id Dist-L, Dist-R.
≡ Tb a;n; c; r + a;n;¬c; id + ¬a; id BA-Excl-Mid,

KA-Seq-One.
≡ Tb a;n; (c; r + ¬c; id) + ¬a; id Dist-L.
≡ Tb if a then n; if c then r else id else id Sugar if statements.

Lemma 58 (Create an if with an unreachable true branch). For all predicates a and

policies p and q, a; p ≡ a; if a then p else q.

Proof.

Assertion Reasoning

a; p
≡ a; id; p KA-Seq-One.
≡ a; (a+ ¬a); p BA-Excl-Mid.
≡ a; (a; a+ a;¬a); p Dist-L.
≡ a; (a; a+ drop); p BA-Contra.
≡ a; (a; a; p+ drop; p) Dist-R.
≡ a; (a; a; p+ drop) KA-Zero-Seq.
≡ a; (a; a; p+ drop; q) KA-Zero-Seq.
≡ a; (a; a; p+ a;¬a; q) BA-Contra.
≡ a; (a; p+ ¬a; q) Dist-L, BA-Seq-Idem.
≡ a; if a then p else q Dist-L, BA-Seq-Idem.

Lemma 59 (Not false is true). ¬drop ≡ id.

Proof.

Assertion Reasoning

id
≡ drop + ¬drop BA-Excl-Mid.
≡ ¬drop KA-Plus-Drop.

207

Lemma 60 (Create an if with an unreachable false branch). For all predicates a and

b and policies p and q, if a; b ≡ drop then a; p ≡ a; if b then q else p.

Proof.

Assertion Reasoning

a; p
≡ a; id; p KA-Seq-One.
≡ a; (drop + id); p KA-Zero-Plus.
≡ a; (drop; p+ id; p) Dist-R.
≡ a; (drop; q + id; p) KA-Zero-Seq.
≡ a; (drop; q + ¬drop; p) Lemma 59.
≡ a; (a; b; q + ¬a; b; p) Equals for equals.
≡ a; (a; b; q + ¬a; p+ ¬b; p) De Morgan’s law, Dist-R.
≡ (a; b; q + a;¬a; p+ a;¬b; p) Dist-L, BA-Seq-Idem.
≡ (a; b; q + drop + a;¬b; p) BA-Contra, KA-Seq-Zero.
≡ (a; b; q + a;¬b; p) KA-Plus-Zero.
≡ a; (b; q + ¬b; p) Dist-L.
≡ a; if b then q else p Sugar if statement.

Lemma 61 (Multicast consolidation does not introduce tables where none previously

existed). For all policies p and consolidation stages m and metadata annotations s,

if p and m are closed (do not contain tables), and m′, n, θ = pipeline s p m, then m′

and n are closed and θ = id.

Proof. The proof proceeds by a straightfoward induction on the structure of the policy

p: only the cases where p = (x : τ) and p = f ← v might produce policies with tables,

but the former is ruled out by our hypotheses and the latter only introduces tables

when a table already exists in the input consolidation stage, which is also ruled out

by our hypotheses.

Lemma 62 (Substitution preserves typing). For all policies p and table bindings b

and contexts Γ, if p ` b wf and Γ ` p : τ , then ` Tb p.

208

Proof. Induction on the structure of the typing derivation Γ ` p : τ , relying on

Definition 4 to replace tables with closed, similarly well-typed policies.

Lemma 63 (Types indicate sequential commutativity). For all policies p and q and

contexts Γ1,Γ2 and well-formed table bindings b, if Γ1 ` p : (Rp,Wp) and Γ2 ` q :

(Rq,Wq) and Wp ∩Wq = Wp ∩ Rq = Wq ∩ Rp = ∅, then Tb p; q ≡ Tb q; p.

Proof. Follows from Lemma 5 and Lemma 4 and Lemma 62.

Theorem 9 (Multicast consolidation is semantics preserving). For all policies p, types

τp = (Rp,Wp) and τm = (Rm,Wm), consolidation stages m1, metadata annotations s,

contexts Γ, and table bindings b, if

1. p ` b wf and m1 ` b wf, and

2. Γ ` p : τp and Γ ` m1 : τm, and

3. m2, n, θ = pipeline s p m1,

and let z = Πifi ← 0, for all metadata fields fi in the set of fresh metadata fields fs

introduced in pipeline s p m1, then

1. m2 ` θb wf and n ` θb wf, and

2. there exists Γ′ and Γ′′ such that

• Γ′ = Γ,Γ′′, and

• Γ′ ` m2 : (Rm ∪ Rp ∪Wp,Wm ∪ {fs}), and

• Γ′ ` n : (Rp ∪ fs ,Wp), and

3. Tb z; p;m1; z ≡ Tθb z;m2;n; z.

209

Proof. The proof proceeds by mutual induction on the policy p and the consolidation

stage m1. The cases where m1 = drop are immediate, as are the cases where the

policy is id or drop.

A brief note on equivalence and binding substitution. In cases where binding

substitutions are not applied directly, we omit the enclosing binding substitution to

reduce the burden of notation. That is, we write p ≡ q rather than Tb p ≡ Tb q.

Case p = a. For the first goal: θ = id, and so θb = b, and the result follows from

H1. For the second goal: this case does not introduce new tables, so Γ = Γ′.

• By H2, Γ ` p : (Rp,Wp) and Γ ` m1τm, and by inversion f ∈ Rp ∪ Wp. m2

is equivalent to m1 with f = v distributed through the summation, and so

Γ ` m2 : (Rm ∪ Rp ∪ Rw,Wm ∪ {fs}).

• n = p, and so Γ ` n : (Rp ∪ fs ,Wp) follows from H2.

Finally, for the third goal: note that by definition, consolidation stages only mod-

ify fields that are fresh with respect to the original policy. Hence, the predicate a

commutes with each atomic element of m and the result follows from [KAT-Commute].

Case p = f ← v. We have that m1 = m′1 + a; s. The consolidation sequence can

take one of two forms.

Subcase s = Πifi ← 1. Note that f ← v; (m′1 + a; s) distributes by [Dist-L]

to f ← v;m′1 + f ← v; a; s, which is then equivalent by way of [PA-Mod-Filter] to

f ← v;m′1 + f ← v; f = v; a; s. There are two cases for f = v; a: either it is equivalent

to drop or not. In both cases, after unrolling pipeline, we have that (f = v; a′) =

specialize (f = v a and m′2, n1, θ1 = pipeline s f ← v m′1.

Sub-subcase f = v; a ≡ drop. First, note that by Lemma 65 we have that

f = v; a ≡ f = va′ ≡ drop. The results follow from the IH, using [KA-Zero-Seq], and

[KA-Plus-Zero] for G3.

210

Sub-subcase f = v; a 6≡ drop. Again, note that by Lemma 65 we have that
f = v; a ≡ f = v; a′. Furthermore, by the definition of pipeline, n1 is either f ← v
or drop, depending on whether m′1 is drop. The third goal holds by the following
reasoning.

Assertion Reasoning

z; f ← v; (m′1 + a; s); z
≡ z; f ← v;m′1; z + z; f ← v; a; s; z [Dist-L, Dist-R]
≡ z;m′2;n1; z + z; f ← v; a; s; z IH.
≡ z;m′2;n1; z + z; f ← v; f = v; a; s; z [PA-Mod-Filter]
≡ z;m′2;n1; z + z; f ← v; f = v; a′; s; z Lemma 65
≡ z;m′2;n1; z + z; f ← v; a′; s; z [PA-Mod-Filter]
≡ z;m′2;n1; z + z; a′; f ← v; s; z Lemma 63, Definition 9.
≡ z;m′2;n1; z + z; a′; s; f ← v; z Definition of s.

Hence, if n1 = drop then m′2 is drop and the result is z; (m′2 + a′; s); f ← v; z

by KA-Plus-Zero. Otherwise, if n1 = f ← v, then the same result follows from

distribution.

The first goal holds as a result of the IH. The second follows from the IH and

Lemma 65.

Subcase s = Πifi ← 1; (x : τ). Let q = fi ← 1. After unfolding pipeline, we have

the following.

θ1 = (λ b, y.

let m′, , = pipeline s f ← v (Tb a; (x : τ); q) in

if y = z then m′

elseTb y)

τ2 = typeof (a; q; (x : τ))

m2, , θ2 = pipeline s f ← v m′1

211

Let z = z1; z2, where z1 and z2 zero metadata introduced in the recursive calls to

pipeline. From the IH, we also have the following.

Tid z1; f ← v; (Tb a; (x : τ); q); z1 ≡ Tid z1;m
′;n′; z1

Tb z2; f ← v;m′1; z2 ≡ Tθ2b z2;m2; f ← v; z2

For the third goal, we must show the following.

Tb z; f ← v; (m′1 + a; q; (x : τ)); z ≡ Tθ1◦θ2b z; (m2 + (z : τ2)); f ← v; z

Before beginning, note that by construction θ1 and θ2 introduce bindings for different
tables, and so from Lemma 68 we have that Tθ1◦θ2b m2 = Tθ2b m2 and Tθ1◦θ2b (z :
τ2) = Tθ1b (z : τ2).

Assertion Reasoning

Tb z; f ← v; (m′1 + a; q; (x : τ)); z
≡ Tb z; f ← v;m′1; z + z; f ← v; a; (x : τ); q; z Dist-L, Dist-R.
≡ Tb z1; z2; f ← v;m′1; z2; z1 + z2; z1; f ← v; a; (x : τ); q; z1; z2 PA-Mod-Comm.
≡ z1;Tb (z2; f ← v;m′1; z2); z1

+z2;Tid (z1; f ← v; (Tb a; (x : τ); q); z1); z2 Definition of T .
≡ z1;Tθ2b (z2;m2; f ← v; z2); z1 + z2;Tid (z1;m

′; f ← v; z1); z2 IH.
≡ z1; z2; (Tθ2b m2); f ← v; z2; z1 + z2; z1;m

′; f ← v; z1; z2 Definition of T .
≡ z; (Tθ2b m2); f ← v; z + z;m′; f ← v; z Equals for equals,

PA-Mod-Comm.
≡ z; (Tθ2b m2 +m′); f ← v; z Dist-L, Dist-R.
≡ z; (Tθ2b m2 + Tθ1b (z : τ2)); f ← v; z Definition of θ1.
≡ z; (Tθ1◦θ2b m2 + Tθ1◦θ2b (z : τ2)); f ← v; z Equals for equals.
≡ Tθ1◦θ2b z; (m2 + (z : τ2)); f ← v; z Definition of T .

The first goal follows from H1, the IH, and the fact that invoking pipeline on closed

policies produces closed policies (Lemma 61). The second goal follows from H2.

212

Case p = x : (R,W). After unrolling pipeline, we have the following.

τ = typeof m

tm = y : (R, fs) ∪ τ

tn = z : (R ∪ fs ,W)

θ′ = (λb, w.

let m′, n, θ = pipeline s (Tb x) (Tb m1) in

if w = y then m′

else if w = z then n

else Tθ b w)

And from the IH, we have the following.

Tb z; (x : (R,W));m; z ≡ Tθ′b z; tm; tn; z

Assertion Reasoning

Tb z; (x : (R,W));m; z
≡ T idz;Tb ((x : (R,W));m); z Definition of T .
≡ T idz;m′;n; z IH.
≡ z;m′;n; z Definition of T .
≡ Tθ′b z; tm; tn; z Definition of θ′.

The first goal follows from Lemma 61 and from H1. The second goal follows from

H2 and the definitions of tm and tn.

Case p = if b then p1 else p2. After unfolding pipeline, we have the following.

Σiai; si, n1, θ1 = pipeline s p1 m

Σjaj; sj, n2, θ2 = pipeline s p2 m

213

Let z = z1; z2, where z1 and z2 zero the metadata introduced in the recursive calls to

pipeline. From the IH, we have the following.

z1; p1;m; z1 ≡ z1; (Σiai; si);n1; z1

z2; p2;m; z2 ≡ z2; (Σjaj; sj);n2; z2

Assertion Reasoning

z; if b then p1 else p2;m; z
≡ z; (b; p1 + ¬b; p2);m; z Desugar if statement.
≡ z; b; p1;m; z + z;¬b; p2;m; z Dist-L, Dist-R.
≡ z1; z2; b; p1;m; z1; z2 + z1; z2;¬b; p2;m; z1; z2 Equals for equals.
≡ z2; z1; b; p1;m; z1; z2 + z1; z2;¬b; p2;m; z2; z1 PA-Mod-Mod-Comm.
≡ z2; b; z1; p1;m; z1; z2 + z1;¬b; z2; p2;m; z2; z1 KAT-Commutes,

freshness.
≡ z2; b; z1; (Σiai; si);n1; z1; z2 + z1;¬b; z2; (Σjaj ; sj);n2; z2; z1 IH.
≡ z2; z1; b; (Σiai; si);n1; z1; z2 + z1; z2;¬b; (Σjaj ; sj);n2; z2; z1 KAT-Commutes,

freshness.
≡ z2; z1; (Σib; ai; si);n1; z1; z2 + z1; z2; (Σj¬b; aj ; sj);n2; z2; z1 Dist-L.
≡ z1; z2; (Σib; ai; si);n1; z1; z2 + z1; z2; (Σj¬b; aj ; sj);n2; z1; z2 PA-Mod-Mod-Comm.
≡ z; (Σib; ai; si);n1; z + z; (Σj¬b; aj ; sj);n2; z Equals for equals.
≡ z; ((Σib; ai; si);n1 + (Σj¬b; aj ; sj);n2); z Dist-L, Dist-R.
≡ z; ((Σib; b; ai; si);n1 + (Σj¬b;¬b; aj ; sj);n2); z BA-Seq-Idem.
≡ z; ((Σib; ai; b; si);n1 + (Σj¬b; aj ;¬b; sj);n2); z BA-Seq-Comm.
≡ z; ((Σib; ai; si; b);n1 + (Σj¬b; aj ; sj ;¬b);n2); z KAT-Commutes,

freshness.
≡ z; ((Σib; ai; si); b;n1 + (Σj¬b; aj ; sj);¬b;n2); z Dist-R.
≡ z; ((Σib; ai; si); b;n1 + drop + drop + (Σj¬b; aj ; sj);¬b;n2); z KA-Plus-Zero.
≡ z; ((Σib; ai; si); b;n1 + (Σj¬b; aj ; sj); drop;n1; +

(Σib; ai; si); drop;n2 + (Σj¬b; aj ; sj);¬b;n2); z KA-Seq-Zero,
KA-Zero-Seq.

≡ z; ((Σib; ai; si); b;n1 + (Σj¬b; aj ; sj);¬b; b;n1; +
(Σib; ai; si); b;¬b;n2 + (Σj¬b; aj ; sj);¬b;n2); z BA-Contra.

≡ z; ((Σib; ai; si); b;n1 + (Σj¬b; aj ; sj); b;n1; +
(Σib; ai; si);¬b;n2 + (Σj¬b; aj ; sj);¬b;n2); z BA-Seq-Idem,

BA-Seq-Comm,
KAT-Commutes,
freshness.

≡ z; ((Σib; ai; si) + (Σj¬b; aj ; sj)); (b;n1 + ¬b;n2); z Dist-L, Dist-R.
≡ z; ((Σib; ai; si) + (Σj¬b; aj ; sj)); if b then n1 else n2; z Sugar if statements.

214

The first goal follows from the IH. The second goal follows from the IH as well,

observing that adding b to the consolidation stage types under Rp ∪ Wp. Finally,

the third goal follows from if statement de-nesting (Lemma 70) and qualification

(Lemma ??):

if b then n1 else n2 ≡ qualify b n1; qualify b n2

Case p = p1 + p2. After unrolling pipeline, we have the following.

m′1, n1, θ1 = pipeline s p1 m

Σjaj; sj, n2, θ2 = pipeline s p2 m

n′1 = qualify f = 0 n1

n′2 = qualify f = 1 n2

Let z = f ← 0; z1; z2, where z1 and z2 zero the metadata introduced in the recursive

calls to pipeline. From the IH, we also have the following.

z1; p1;m; z1 ≡ z1;m
′
1;n1; z1

z2; p2;m; z2 ≡ z2; (Σjaj; sj);n2; z2

Lemma 57 also leads to the following.

n′1 ≡ if f = 0 then n1 else id

n′2 ≡ if f = 1 then n2 else id

With these facts in mind, we can show the third goal as follows.

Assertion Reasoning

z; (p1 + p2);m; z
≡ z; p1;m; z + z; p2;m; z Dist-L, Dist-R.
≡ f ← 0; z2; z1; p1;m; z1; z2; f ← 0+

f ← 0; z1; z2; p2;m; z2; f ← 0; z1 Equals for equals,
PA-Mod-Mod-Comm.

215

≡ f ← 0; z2; z1;m
′
1;n1; z1; z2; f ← 0+

f ← 0; z1; z2; (Σjaj ; sj);n2; z2; f ← 0; z1 IH.
≡ z;m′1;n1; z + z; (Σjaj ; sj);n2; z Equals for equals,

PA-Mod-Mod-Comm.
≡ z; (m′1;n1 + (Σjaj ; sj);n2); z Dist-L, Dist-R.
≡ z; f = 0; (m′1;n1 + (Σjaj ; sj);n2); z PA-Mod-Filter,

PA-Mod-Filter-Comm.
≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; sj);n2); z KAT-Commute,

freshness.
≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; sj);n2); f ← 0; z PA-Mod-Mod-Comm,

PA-Mod-Filter,
PA-Filter-Mod.

≡ z; (m′1; f = 0;n1; f ← 0 + f = 0; (Σjaj ; f ← 0; sj);n2); z KAT-Commute,
freshness,
Dist-R.

≡ z; (m′1; f = 0;n1; f ← 0+
f = 0; (Σjaj ; f ← 1; f ← 0; sj);n2); z PA-Mod-Mod.

≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; f ← 1; sj);n2); f ← 0; z Dist-R,
freshness,
KAT-Commute.

≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; f ← 1; sj);n2); z PA-Mod-Mod-Comm,
PA-Mod-Filter,
PA-Filter-Mod.

≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; f ← 1; f = 1; sj);n2); z PA-Mod-Filter.
≡ z; (m′1; f = 0;n1 + f = 0; (Σjaj ; f ← 1; sj); f = 1;n2); z KAT-Commute,

freshness,
Dist-R.

≡ z; (m′1; f = 0; if f = 0 then n1 else id+
f = 0; (Σjaj ; f ← 1; sj);
f = 1; if f = 1 then n2 else id); z Lemma 58.

≡ z; (m′1; f = 0; if f = 0 then n1 else id;
if f = 1 then n2 else id+
f = 0; (Σjaj ; f ← 1; sj);
f = 1; if f = 0 then n1 else id;
if f = 1 then n2 else id); z Lemma 60.

≡ z; (m′1; f = 0 + f = 0; (Σjaj ; f ← 1; sj); f = 1);
if f = 0 then n1 else id; if f = 1 then n2 else id); z Dist-R.

≡ z; (m′1 + (Σjaj ; f ← 1; sj);
f = 1); if f = 0 then n1 else id;
if f = 1 then n2 else id); z KAT-Commute,

freshness,
Dist-L.

≡ z; (m′1 + (Σjaj ; f ← 1; sj)); if f = 0 then n1 else id;
if f = 1 then n2 else id); z KAT-Commute,

freshness,
Dist-R,
PA-Mod-Filter.

216

≡ z; (m′1 + Σj ; aj ; f ← 1; sj);n
′
1;n
′
2; z Lemma 57.

The first goal follows from the IH. The second follows from the IH and H2.

Case p = p1; p2. After unrolling pipeline, we have the following.

m2, n2, θ2 = pipeline s p2 m

m1, n1, θ1 = pipeline s p1 m2

Applying the IH yields the following.

z2; p2;m; z2 ≡ z2;m2;n2; z2

z1; p1;m2; z ≡ z;m1;n1; z1

We must show the following.

z; p1; p2;m; z ≡ z;m1;n1;n2; z

Let z = z1; z2, where z1 and z2 zero metadat introduced in the recursive calls to

pipeline.

Assertion Reasoning

z; p1; p2;m; z
≡ z1; z2; p1; p2;m; z1; z2 Equals for equals.
≡ z1; p1; z2; p2;m; z1; z2 KAT-Commute, freshness.
≡ z1; p1; z2; p2;m; z2; z1 [PA-Mod-Comm]
≡ z1; p1; z2;m2;n2; z2; z1 IH.
≡ z2; z1; p1;m2;n2; z1; z2 [PA-Mod-Comm]
≡ z2; z1; p1;m2; z1;n2; z2 KAT-Commute, freshness.
≡ z2; z1;m1;n1; z1;n2; z2 IH.
≡ z2; z1;m1;n1;n2; z1; z2 KAT-Commute, freshness.
≡ z1; z2;m1;n1;n2; z1; z2 [PA-Mod-Comm]
≡ z;m1;n1;n2; z Equals for equals.

The first and second goals follow from the IH.

217

Case p = p1 W1||W2 p2. Follows from the case where p = p1; p2 and Lemma 5.

218

C.2.3 Refactoring Field Modification

The packet processing pipeline on the RMT chip is conceptually divided into three

parts: an initial pipeline of ingress match stages, a set of queues, and a final pipeline

of egress match stages. Multicast is implemented by copying pointers to the packet

into queues. Each queue is associated with a given output port, and the number

of times a packet pointer is enqueued corresponds to the number of copies emitted

from that port. Optionally, each packet pointer may also have an identifier set for

individualized processing in the egress pipeline. In order to compile our (r,m, n)

structured policy to the RMT architecture, we need to know which output port a

packet copy is destined for at the time the packet is copied (i.e. in m).

Lemma 64. For all predicates c, policies p1, p2, q1, q2, z, and fresh fields f , if z ≡

f ← 0; Πifi ← 0, then

z; if c then p1; p2 else q1; q2; z ≡ z; (if c then p1; f ← 1 else q1); if f = 1 then p2 else q2; z

Proof.

Assertion Reasoning

z; if c then p1; p2 else q1; q2; z
≡ z; c; p1; p2; z + z;¬c; q1; q2; z [Desugar]
≡ z; c; p1; p2; z + drop
+ drop + z;¬c; q1; q2; z [Plus-Zero]
≡ z; c; p1; p2; z + drop
+ drop + z;¬c; q1;¬f = 1; q2; z [Freshness, z, BA-Inverse]
≡ z; c; p1; p2; z + drop
+ z; c; p1; f ← 1;¬f = 1; q2; z + z;¬c; q1;¬f = 1; q2; z [BA-Contra]
≡ z; c; p1; p2; z + z;¬c; q1; f = 1; p2; z
+ z; c; p1; f ← 1;¬f = 1; q2; z + z;¬c; q1;¬f = 1; q2; z [Freshness, z]
≡ z; c; p1; f ← 1; p2; z + z;¬c; q1; f = 1; p2; z
+ z; c; p1; f ← 1;¬f = 1; q2; z + z;¬c; q1;¬f = 1; q2; z [Freshness, z]
≡ z; c; p1; f ← 1; f = 1; p2; z + z;¬c; q1; f = 1; p2; z
+ z; c; p1; f ← 1;¬f = 1; q2; z + z;¬c; q1;¬f = 1; q2; z [Mod-Match]
≡ z; (c; p1; f ← 1 + ¬c; q1); (f = 1; p2 + ¬f = 1; q2); z
≡ z; (c; p1; f ← 1 + ¬c; q1); if f = 1 then p2 else q2; z [Sugar]

219

Lemma 65 (Specialization is semantics preserving). For all fields f , values v, and

predicates a, f = v; a ≡ specialize f = v a, and if ` a : τ then ` a′ : τ .

Proof. This lemma is a straightforward generalization of Lemma 32. The typing

result follows from a straightforward induction on the typing derivation.

Lemma 66 (Sequenced extraction of closed policies is semantics preserving). For

all multicast-free policies r, and modification stages e, and fields f , and metadata

estimates s, if

1. ` r : (Rr,Wr), and

2. ` e : (Re,We), and

3. Rr ∩We = {f } and Wr ∩We = {f }, and

4. (e′, r′, θ) = extf s r e, and

5. extf s r e produces fresh metadata fields fs, and

6. r and e are closed,

then

• let z = Πf ∈fs f ← 0,

• ` r′ : (Rr,Wr \ {f }), and

• ` e′ : (Re ∪ Rr,We ∪ {f } ∪ fs), and

• r′ and e′ are closed, and

• θ = id, and

220

• z; r; e; z ≡ z; e′; r′; z.

Proof. The proof proceeds by mutual induction on r and e. The base case of e, where

e = drop, is always immediate, leaving e = e1 + a;m. Aside from modification, the

base cases of r are immediate (or contradictory, in the case where r is a table). We

examine the remaining cases below.

Case r = f ′ ← v. We have that e = e1 + a; Πifi ← vi, as the alternative—where

e includes a table—is contradictory. Reducing the application of extf s f ′ ← v e

(Definition 15) yields the following.

let (f ′ = v; a′) = specialize (f ′ = v) a in

let e′, p′, θ = extf (f ′ ← v) e in

if (f ′ = v; a′) ≡ drop then

(e′, p′, θ)

else if f = f ′ then

((e′ + a′; f ′ ← v; Πifi ← vi), id, θ)

else

((e′ + a′; Πifi ← vi), f
′ ← v, θ)

Intuitively, the goal of this function is to compute some e′ and p′ such that p; e ≡ e′; p′

and modifications of f in p are moved to e′ and replaced with id in p′. From the

induction hypothesis, we have that

z; f ′ ← v; e1; z ≡ z; e′; p′; z

There are three cases.

Subcase f ′ = v; a′ ≡ drop. We must show the following.

z; f ′ ← v; (e1 + a; Πifi ← vi); z ≡ z; e′; p′; z

221

Assertion Reasoning

z; f ′ ← v; (e1 + a; Πifi ← vi); z
≡ z; f ′ ← v; e1; z+

z; f ′ ← v; a; Πifi ← vi; z [Dist-L, Dist-R]
≡ z; e′; p′; z+

z; f ′ ← v; a; Πifi ← vi; z [IH]
≡ z; e′; p′; z+

z; f ′ ← v; f ′ = v; a; Πifi ← vi; z [Mod-Filter]
≡ z; e′; p′; z+

z; f ′ ← v; drop; Πifi ← vi; z [Lemma 65, case assumption]
≡ z; e′; p′; z [Seq-Zero, Zero-Seq]

Subcase f ′ = v; a′ 6≡ drop and f = f ′. We must show the following.

z; f ′ ← v; (e1 + a; Πifi ← vi); z ≡ z; (e′ + a′; f ′ ← v; Πifi ← vi); id; z

First, note from the definition of ext , p′ = id in this case.

Assertion Reasoning

z; f ′ ← v; (e1 + a; Πifi ← vi); z
≡ z; f ′ ← v; e1; z+

z; f ′ ← v; a; Πifi ← vi; z [Dist-L, Dist-R]
≡ z; e′; p′; z+

z; f ′ ← v; a; Πifi ← vi; z [IH]
≡ z; e′; p′; z+

z; f ′ ← v; f ′ = v; a′; Πifi ← vi; z [Mod-Filter, Lemma 65]
≡ z; e′; p′; z+

z; f ′ ← v; a′; Πifi ← vi; z [Mod-Filter]
≡ z; e′; p′; z+

z; a′; f ′ ← v; Πifi ← vi; z [Lemma 4.4 [3], Definition 9]
≡ z; e′; id; z+

z; a′; f ′ ← v; Πifi ← vi; id; z [Seq-One, p′ = id]
≡ z; (e′ + a′; f ′ ← v; Πifi ← vi); id; z [Dist-R, Dist-L]

222

Subcase f ′ = v; a′ 6≡ drop and f 6= f ′. We must show the following. First, note

from the definition of ext , p′ = f ′ ← v in this case.

z; f ′ ← v; (e1 + a; Πifi ← vi); z ≡ z; (e′ + a′; Πifi ← vi); f ′ ← v; z

Assertion Reasoning

z; f ′ ← v; (e1 + a; Πifi ← vi); z
≡ z; f ′ ← v; e1; z+

z; f ′ ← v; a; Πifi ← vi; z [Dist-L, Dist-R]
≡ z; e′; p′; z+

z; f ′ ← v; a; Πifi ← vi; z [IH]
≡ z; e′; p′; z+

z; f ′ ← v; f ′ = v; a′; Πifi ← vi; z [Mod-Filter, Lemma 65]
≡ z; e′; p′; z+

z; f ′ ← v; a′; Πifi ← vi; z [Mod-Filter]
≡ z; e′; p′; z+

z; a′; f ′ ← v; Πifi ← vi; z [Lemma 4.4 [3], Definition 9]
≡ z; e′; p′; z+

z; a′; Πifi ← vi; f
′ ← v; z [Mod-Mod-Comm, case assumption,

hypothesis We ∩Wr ⊆ {f }]
≡ z; e′; f ′ ← v; z+

z; a′; Πifi ← vi; f
′ ← v; z [p′ = f ′ ← v]

≡ z; (e′ + a′; Πifi ← vi); f
′ ← v; z [Dist-R, Dist-L]

In each subcase, the other goals (besides equivalence) immediately hold.

Case r = if b then r1 else r2. From the reduction of extf s (if b then r1 else r2) e,

we have

• (
∑

i a1i,m1i), p1, θ1 = extf s r1 e

• (
∑

j a2j,m2j), q2, θ2 = extf s r2 e

• e′ =
∑

i b; a1i;m1i; f ′ ← 1 +
∑

j ¬b; a2j;m2j

• r′ = if f ′ = 1 then p1 else q2

• θ = θ2 ◦ θ1
223

From the induction hypothesis, it follows that

• (
∑

i a1i;m1i); r11 ≡ r1; e

• (
∑

j a2j;m2j); r12 ≡ r2; e

We must show that

z; if b then r1 else r2; e; z ≡ z; e′; r′; z

The equivalence result follows from instantiating Lemma 64 with

• c = b

• p1 = (
∑

i a1i;m1i)

• p2 = r11

• q1 = (
∑

j a2j;m2j)

• q2 = r12

and substituting equals for equals. The other goals are immediate.

Case r = r1; r2. After reducing extf s r1; r2 e, we have

• e1, r4, θ1 = extf s r2 e

• e2, r3, θ2 = extf s r1 e1

From the induction hypothesis, we have

• z ≡ z1; z2

• z1; r2; e; z1 ≡ z1; e1; r4; z1

• z2; r1; e1; z2 ≡ z2; e2; r3; z2

224

We must show

z; r1; r2; e; z ≡ z; e2; r3; r4; z

225

Assertion Reasoning

z; r1; r2; e; z
≡ z1; z2; r1; z; r2; e; z1; z2 [Substitution]
≡ z2; r1; z1; r2; e; z1; z2 [Freshness]
≡ z2; r1; z1; e1; r4; z1; z2 [Substitution]
≡ z1; z2; r1; e1; r4; z1; z2 [Freshness]
≡ z1; z2; r1; e1; z2; r4; z1 [Freshness]
≡ z1; z2; e2; r3; z2; r4; z1 [Substitution]
≡ z1; z2; e2; r3; r4; z1; z2 [Freshness]
≡ z; e2; r3; r4; z [Freshness]

Case r = r1 || r2. After rewriting with [Con-Seq], this case proceeds identically as

the case where r = r1; r2.

Lemma 67 (Compilation extends table bindings). For all policies p, r, e, fields f ,

table bindings b, if

• e′, r′, θ = extf r e , and

• extf r e introduces tables x1 : τ1, . . . , xn : τn ∈ xs,

then for all policies p that do not contain tables xs, Tb p = Tθ b p.

Proof. Induction on the structure of r and the definition of T .

Lemma 68 (Transforming a pre-compiled policy has no effect). For all policies p,

table bindings b, and binding transformers θ, if

• let xs be the tables that appear in p

• Tb p produces a closed term, and

• for all x : τ ∈ xs, Tb x = Tθ b x

then Tb p = Tθ b p.

Proof. Induction on p.

226

Theorem 10 (Field extraction is semantics preserving). For all multicast-free policies

r, modification stages e, table bindings b, contexts Γ, and fields f , if

1. r ` b wf and e ` b wf, and

2. Γ ` r : (Rr,Wr), and Γ ` e : (Re,We), and

3. Rr ∩We = {f } and Wr ∩We = {f }, and

4. (e′; r′, θ) = extf s r e, and

and let z = Πifi ← 0, for all metadata fields fi in the set of fresh metadata fields fs

introduced in extf s r e, then

1. e′ ` θb wf and r′ ` θb wf, and

2. there exists Γ′ and Γ′′ such that

• Γ′ = Γ,Γ′′, and

• Γ′ ` r′ : (Rr,Wr \ {f }), and

• Γ′ ` e′ : (Re ∪ Rr,We ∪ {f } ∪ fs), and

3. Tb (z; r; e; z) ≡ Tθ b (z; e′; r′; z).

Proof. Mutual induction on e and r. The base case of e is immediate, leaving e =

(e + a;m), and the cases for r = id and r = drop are immediate, and r = a follows

from the induction hypothesis. The combinator cases proceed similarly to Lemma 66,

relying on Lemmas 67 and 68 to reason about composing binding transformers. The

interesting cases are modifications and table variables.

Case r = f ′ ← v, e = e0 +a;m. When m does not contain a table, the result follows

from the induction hypothesis, similar to Lemma 66. Otherwise, m = a; q; (x : τ).

227

After unrolling, we have:

let e1 = a; q; (x : τ) in

let τ1 = typeof e1 in

let p1 = x1 : τ1 ∪ (∅, {f }) in

let θ1 = (λb, y.

let e2, p2, θ2 =

extf s (f ← v) (Tb e1)

if y = x1 then e2

else Tb y) in

let e2, , θ3 = extf s (f ← v) e0 in

if f = f ′ then

(e2 + p1, id, θ3 ◦ θ1)

else

(e2 + p1, f
′ ← v, θ3 ◦ θ1)

There are two cases.

Subcase f = f ′. After reducing extf s f ′ ← v e when f = f ′, we must show the

following.

Tb (z; f ← v; (e0 + a; q; (x : τ)); z) ≡ T(θ3◦θ1) b (z; (e2 + p1); id; z)

From the IH, we have

Tb (z; f ← v; e0; z) ≡ Tθ3b (z; e2; id; z)

And from Lemma 66, we have

z; e2; z ≡ z; f ← v;Tb e1; z

228

noting that p2 = id when f = f ′, from the definition of the function.

Assertion Reasoning

Tb (z; f ← v; (e0 + a; q; (x : τ)); z)
≡ Tb z; f ← v; e0; z + z; a; q; (x : τ); z [Dist-R, Dist-L]
≡ (Tb z; f ← v; e0; z) + z;Tb a; q; (x : τ); z [Definition of T]
≡ (Tθ3 b z; e2; z) + z;Tb a; q; (x : τ); z [IH]
≡ z; (Tθ3 b e2); z + z;Tb a; q; (x : τ); z [Definition of T]
≡ z; (Tθ3 b e2); z + z; e2; z [Lemma 66]
≡ z;Tθ3 b e2; z + z; (Tθ1 b p1); z [Definition of θ1]
≡ z; ((Tθ3 b e2) + (Tθ1 b p1)); id; z [Dist-R, Dist-L]
≡ z; ((Tθ3 b e2) + (T(θ3◦θ1) b p1)); id; z [Lemma 67]

≡ z; ((T(θ3◦θ1) b e2) + (T(θ3◦θ1) b p1)); id; z [Definition of θ1]

≡ T(θ3◦θ1) b (z; (e2 + p1); id; z) [Definition of T]

The remaining goals are immediate.

Subcase f 6= f ′. After reducing extf s f ′ ← v e when f 6= f ′, we must show the

following.

Tb (z; f ′ ← v; (e0 + a; q; (x : τ)); z) ≡ T(θ3◦θ1) b (z; (e2 + p1); f ′ ← v; z)

From the IH, we have

Tb (z; f ′ ← v; e0; z) ≡ Tθ3b (z; e2; id; z)

And from Lemma 66, we have

z; e2; f ′ ← v; z ≡ z; f ′ ← v;Tb e1; z

noting that p2 = f ′ ← v when f 6= f ′, from the definition of the function.

Assertion Reasoning

Tb (z; f ′ ← v; (e0 + a; q; (x : τ)); z)
≡ Tb z; f

′ ← v; e0; z + z; f ′ ← v; a; q; (x : τ); z [Dist-R, Dist-L]
≡ (Tb z; f

′ ← v; e0; z) + z; f ′ ← v;Tb a; q; (x : τ); z [Definition of T]
≡ (Tθ3 b z; e2; z) + z; f ′ ← v;Tb a; q; (x : τ); z [IH]

229

≡ z; (Tθ3 b e2); z + z; f ′ ← v;Tb a; q; (x : τ); z [Definition of T]
≡ z; (Tθ3 b e2); z + z; e2; f

′ ← v; z [Lemma 66]
≡ z;Tθ3 b e2; z + z; (Tθ1 b p1); f

′ ← v; z [Definition of θ1]
≡ z; ((Tθ3 b e2) + (Tθ1 b p1)); f

′ ← v; z [Dist-R, Dist-L]
≡ z; ((Tθ3 b e2) + (T(θ3◦θ1) b p1)); f

′ ← v; z [Lemma 67]

≡ z; ((T(θ3◦θ1) b e2) + (T(θ3◦θ1) b p1)); f
′ ← v; z [Definition of θ1]

≡ T(θ3◦θ1) b (z; (e2 + p1); f
′ ← v; z) [Definition of T]

The remaining goals are immediate.

Case r = (x : (R,W)). After reducing, we have

let fs = s(x) fresh fields in

let τ = typeof e in

let θ =

(λb, z.

let e1, p, id = extf s (Tb x) (Tb e) in

if z = w1 then e1

else if z = w2 then p

else Tb(z)) in

let e′ = (w1 : (∅, f ∪ fs) ∪ τ) in

let p′ = (w2 : (R ∪ fs ,W \ f)) in

(e′, p′, θ)

From Lemma 66, we have that θ1 = id, e1 and p are closed, and e1; p ≡ (Tb (x :

(R,W)); e). We must show

Tb z; (x : (R,W)); e; z ≡ Tθ b z; e′; p′; z

Assertion Reasoning

Tb z; (x : (R,W)); e; z
≡ z; (Tb (x : (R,W)); e); z [Definition of T]

230

≡ z; e1; p; z [Lemma 66]
≡ Tθ b z; e

′; p′; z [Definition of T and θ]

The remaining goals are immediate.

C.2.4 If De-nesting

Lemma 69 (If flattening preserves semantics). For all well-typed predicates a and b

and policies p and q and r, the following equivalence holds.

if a then (if b then p else q) else r ≡ if a; b then p else (if a then q else r)

Proof. The proof follows by a series of applications of the equational axioms.

Assertion Reasoning

if a then (if b then p else q) else r
≡ a; (b; p+ ¬b; q) + ¬a; r Desugar.
≡ a; b; p+ a;¬b; q + ¬a; r Dist-L, Dist-R.
≡ a; b; p+ ¬b; a; q + ¬a; r BA-Seq-Comm.
≡ a; b; p+ ¬b; a; q + ¬a; id; r KA-Seq-One.
≡ a; b; p+ ¬b; a; q + ¬a; (id + ¬b); r BA-Plus-One.
≡ a; b; p+ ¬b; a; q + (¬a+ ¬b;¬a); r Dist-L.
≡ a; b; p+ ¬b; a; q + ¬a; r + ¬b;¬a; r Dist-R.
≡ a; b; p+ ¬b; a; q + ¬a;¬a; r + ¬b;¬a; r BA-Seq-Idem.
≡ a; b; p+ drop + ¬b; a; q + ¬a;¬a; r + ¬b;¬a; r KA-Plus-Zero.
≡ a; b; p+ ¬a; a; q + ¬b; a; q + ¬a;¬a; r + ¬b;¬a; r PA-Contra,

KA-Seq-Zero.
≡ a; b; p+ (¬a+ ¬b); a; q + (¬a+ ¬b);¬a; r Dist-R.
≡ a; b; p+ ¬a; b; a; q + ¬a; b;¬a; r De Morgan’s

(Lemma 55).
≡ a; b; p+ ¬a; b(a; q + ¬a; r) Dist-L, Dist-R.
≡ if a; b then p else (if a then q else r) Resugar.

231

Lemma 70 (If de-nesting preserves semantics). For all well-typed predicates a, poli-

cies p and q, and fields f , if f is a fresh field, then

f ← 0; if a then p else q; f ← 0 ≡ f ← 0; (denest if a then p else q); f ← 0

Proof.

Assertion Reasoning

f ← 0; (a; p+ ¬a; q); f ← 0 [Desugaring]
≡ f ← 0; (a; p+ ¬a; q); f ← 0
≡ f ← 0; a; p; f ← 0
+ f ← 0;¬a; q; f ← 0 [Dist-L, Dist-R]
≡ f ← 0; a; p; f ← 0
+ f ← 0; f = 0;¬a; q; f ← 0 [Mod-Match]
≡ f ← 0; a; p; f ← 0
+ f ← 0;¬a; id; f = 0; q; f ← 0 [Seq-One, freshness]
≡ f ← 0; a; p; f ← 1; f ← 0
+ f ← 0;¬a; id; f = 0; q; f ← 0 [Mod-Mod]
≡ f ← 0; a; p; f ← 1;¬(f = 0); id; f ← 0 [Lemma 56,
+ f ← 0;¬a; id; f = 0; q; f ← 0 Mod-Match]
≡ drop
+ f ← 0; a; p; f ← 1;¬(f = 0); id; f ← 0
+ f ← 0;¬a; id; f = 0; q; f ← 0
+ drop [Plus-Zero-Id]
≡ f ← 0; a; p; f ← 1; f = 0; q; f ← 0
+ f ← 0; a; p; f ← 1;¬(f = 0); id; f ← 0
+ f ← 0;¬a; id; f = 0; q; f ← 0 [Mod-Match,
+ f ← 0;¬a; id;¬(f = 0); id; f ← 0 BA-Anihilate]
≡ f ← 0; (a; p; f ← 1 + ¬a; id);

(f = 0; q + ¬f = 0; id); f ← 0 [Dist-R, Dist-L]
≡ f ← 0; if a then p; f ← 1 else id;

if f = 0 then q else id; f ← 0 [Sugaring]

Lemma 71. For all well-typed predicates a and b and policies p and q, if a; p ≡ p; a,

then

if a then (if b then p else id); q else id ≡ (if a; b then q else id); if a then q else id.

232

Proof.

Assertion Reasoning

if a then (if b then p else id); q else id
≡ a; (b; p+ ¬b); q + ¬a Desugar.
≡ a; b; p; q + a;¬b; q + ¬a Dist-L, Dist-R.
≡ a; b; p; q + ¬b; a; q + ¬a BA-Seq-Comm.
≡ a; b; p; q + ¬b; a; q + (id + ¬b);¬a BA-Plus-One,

KA-Zero-Seq.
≡ a; b; p; q + ¬b; a; q + ¬a+ ¬b;¬a Dist-L.
≡ a; b; p; q + (¬a+ ¬b); a; q + (¬a+ ¬b);¬a Dist-R,

PA-Contra,
KA-Seq-Zero,
KA-Plus-Zero.

≡ a; b; p; q + ¬a; b; a; q + ¬a; b;¬a De Morgan’s
(Lemma 55).

≡ a; b; p; q + drop + ¬a; b; a; q + ¬a; b;¬a KA-Plus-Zero.
≡ a; a; b; p; q + a;¬a; b; p+ ¬a; b; a; q + ¬a; b;¬a KA-Zero-Seq,

BA-Seq-Idem,
PA-Contra.

≡ a; b; p; a; q + a; b; p;¬a+ ¬a; b; a; q + ¬a; b;¬a Hypothesis,
KAT-Commute.

≡ (a; b; p+ ¬a; b); (a; q + ¬a) Dist-L, Dist-R.
≡ (if a; b then p else id); if a then q else id Resugar.

C.2.5 Table Replacement

Ultimately, all the logic in a user’s configuration policy must be embedded into tables.

In this step, we transform each non-table element into a (logical) table, coupled with

a table binding that installs the original element to the new table at run time.

Definition 24. Let y be a fresh table name. pack p = (y : (typeof p), (λ b, x. if x =

y then Tb p else Tb x).

Tables begin their lives empty, waiting to be populated with packet processing

rules. The pack p : τ function replaces p with a fresh table y and produces a binding

transformer that populates y with p.

233

Lemma 72 (Table extension). For all policies p, table names y, and table bindings

b, let q, θ = pack p.

Tb p ≡ Tθb q

Proof. After unrolling pack p, we have that Tθb q = Tb p.

Definition 25 (Tableify).

tableify a = pack a

tableify f = v = pack f = v

tableify f ← v = pack f ← v

tableify if a then p else q = pack if a then p else q

tableify p+ q = let x1, θ1 = pack p in

let x2, θ2 = pack q in

(x1 + x2, θ2 ◦ θ1)

tableify p; q = let x1, θ1 = pack p in

let x2, θ2 = pack q in

(x1;x2, θ2 ◦ θ1)

tableify p || q = let x1, θ1 = pack p in

let x2, θ2 = pack q in

(x1 || x2, θ2 ◦ θ1)

The tableify p function is a simple morphism that replaces each atomic element in

p with a new table and constructs a binding transformation that inserts the original

atomic element into its table. Additionally, if statements are also replaced with tables.

Lemma 73. For all policies p and q, table bindings b, and binding transformations

θ, if tableify p = (q, θ) then Tb p ≡ Tθ b q.

234

Proof. By induction on p. Atomic cases follow from Lemma 72, and combinator cases

follow from the induction hypothesis.

C.2.6 Dynamic Programming

So far, we have pipelined multicast, de-nested if statements, and table-fied every other

atomic element, leaving us with a policy consisting of a list of tables followed by a

sum of multicast tables followed by a list of tables, where each list is joined by either

sequential or concurrent composition. Below, we develop an algorithm for placing

policies joined only by sequential composition. In order to find the best ordering, we

simply try all combinations of sequentializations of the concurrent compositions.

Now, suppose we have the following restricted language:

p, q ::= table[n] : τ

| p; q

| p || q

And we have a sequence of tables t1; t2; . . . ; tn.

The RMT pipeline. Recall that in the architecture of the RMT chip, each match

stage has sixteen blocks of 40b by 2048 entry TCAMs and 80b by 1024 entry SRAMs.

For now, we’ll focus on TCAM memory.

Definition 26 (TCAM Block Cost).

blocks a = d(width a)/40e ∗ d(height a)/2048e

Given the policy p; q, there are two options for deploying it to a multi-stage switch.

The first is to place p and q in separate tables, such that q appears after p. The second

is to compile p and q into a single big table at the controller, and then install this

235

table on as many physical tables as necessary. The cost of the former is O (p+ q)

and the latter is O (pq).

Definition 27 (Compilation).

compile table[n] : τ = table[n] : τ

compile p; q = let table[np] : (ρp, αp) = compile p in

let table[nq] : (ρq, αq) = compile q in

table[np ∗ nq] : (ρp ∪ ρq, αp ∪ αq)

compile p || q = let table[np] : (ρp, αp) = compile p in

let table[nq] : (ρq, αq) = compile q in

table[np + nq] : (ρp ∪ ρq, αp ∪ αq)

This calculation of table size is, in many cases, conservative. For example, suppose

p and q are tables that both match on srcip. Their sequential compilation will, at

worst, be additive, not multiplicative. However, suppose p matches srcip and dstip,

whereas q matches dstip and dstport. This is similar to a join in a relational model,

and so we may potentially take the cross product of fields.

Even worse, suppose p and q both match on srcip and dstip. If every rule in each

table matched on each field, we could combine the tables at a fixed cost. However,

suppose p opted to only match on srcip and p on dstip, underutilizing their permissions.

Now compilation produces the cross product.

Definition 28 (Table Cost).

tables a = d(blocks a)/16e

tables p; q = min {tables p+ tables q, tables (compile p; q)}

tables p || q = min {tables p+ tables q, tables (compile p || q)}

236

The problem. Given a sequence of of atoms a1, . . . , an, determine the smallest

sequence of tables required to contain the sequence of atoms.

The algorithm. For convenience, let aij represent an in-order numbering of the

leaves of the abstract syntax tree, starting with a1 as the leftmost leaf. For example,

a1; (a2 || a3); a4, and a23 = a2 || a3. When such a subset spans the boundary of a

concurrent composition, sequentialize it. For example, a12 = a1; a2, and a34 = a3; a4.

input : A sequence of a1n

1 let m[1 . . . n, 1 . . . n] and s[1 . . . n− 1, 2 . . . n] be new tables;
2 for i = 1 to n do
3 m[i, i] = d(blocks ai)/16e;
4 end
5 for l = 2 to n do
6 for i = 1 to n− l + 1 do
7 j = i+ l − 1;
8 m[i, j] =∞;
9 for k = i to j − 1 do

10 q = min(m[i, k] +m[k + 1, j], dblocks compile aij/16e);
11 if q < m[i, j] then
12 m[i, j] = q;
13 s[i, j] = k;

14 end

15 end

16 end

17 end
18 return m and s

C.2.7 Combining Multicast Consolidation and Field Extrac-

tion

Lemma 74 (A summation can be split and connected by unique tags). For all sum-

mations
∑

i pi; qi; q
′
i; p
′
i and pairs of policies qi, q

′
i, if (H1) qi; qj ≡ drop for all i 6= j,

then (
∑

i pi; qi; q
′
i; p
′
i) ≡ (

∑
i pi; qi); (

∑
j q
′
j; p
′
j).

237

Proof. In essence, the proof reasons in reverse by observing that the summands of

the cross product of the two summations are equivalent to drop when i 6= j.

Assertion Reasoning

(
∑

i pi; qi); (
∑

j q
′
j ; p
′
j)

≡ (
∑

ij pi; qi; q
′
j ; p
′
j) Dist-L, Dist-R.

≡ (
∑

i pi; qi; q
′
i; p
′
i) H1, KA-Seq-Zero, KA-Plus-Zero.

Lemma 75 (Summations with unique predicates in each summand are equivalent to

an if). For all summations
∑

i ai; pi, if ai; aj ≡ drop for i 6= j, then

∑
i ai; pi ≡ if a1 then p1 else

if a2 then p2 else

. . .

drop

Proof. The proof goes by induction on the summation. The base case, where the

summation is empty and thus equivalent to drop, is immediate, leaving us the case of

a; p+ (
∑

j aj; pj). By KA-One-Seq and BA-Excl-Mid, we have the following.

a; p+ (
∑
j

aj; pj) ≡ a; p+ (a+ ¬a); (
∑
j

aj; pj)

And we can distribute the summation using Dist-R.

≡ a; p+ a; (
∑
j

aj; pj) + ¬a; (
∑
j

aj; pj)

238

But, by our hypothesis, a; aj ≡ drop. Hence, following KA-Seq-Zero and KA-Plus-

Zero, the middle summation falls away.

≡ a; p+ ¬a; (
∑
j

aj; pj)

Applying the IH gives us an if statement, call it q, such that (
∑

j aj; pj) ≡ q. Substi-

tuting equals for equals and applying the if statement sugaring yields our goal.

≡ if a then p else q

239

Bibliography

[1] Openflow forwarding abstractions working group charter, Apr 2013. See http:

//goo.gl/TtLtw0.

[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dex-
ter Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic foundations
for networks. In POPL, Jan 2014.

[3] Allegra Angus and Dexter Kozen. Kleene algebra with tests and program schema-
tology. Technical Report TR2001-1844, Computer Science Department, Cornell
University, July 2001.

[4] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A type and effect system for deterministic parallel java.
In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’09, pages 97–116,
New York, NY, USA, 2009. ACM.

[5] Pat Bosshart, Dan Daly, Martin Izzard, Nick McKeown, Jennifer Rexford, Dan
Talayco, Amin Vahdat, George Varghese, and David Walker. Programming
protocol-independent packet processors. See http://arxiv.org/abs/1312.

1719, Dec 2013.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando A. Mujica, and Mark Horowitz. Forwarding metamor-
phosis: fast programmable match-action processing in hardware for SDN. In
SIGCOMM, pages 99–110, 2013.

[7] Broadcom BCM56846 StrataXGS 10/40 GbE switch. See http://www.

broadcom.com/products/features/BCM56846.php, 2014.

[8] Ernie Cohen. Using Kleene algebra to reason about concurrency control. Tech-
nical report, Telcordia, Morristown, N.J., 1994.

[9] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, 1971.

240

http://goo.gl/TtLtw0
http://goo.gl/TtLtw0
http://arxiv.org/abs/1312.1719
http://arxiv.org/abs/1312.1719
http://www.broadcom.com/products/features/BCM56846.php
http://www.broadcom.com/products/features/BCM56846.php

[10] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Participatory networking: An API for application control of
SDNs. In SIGCOMM, 2013.

[11] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-
nifer Rexford, Alec Story, and David Walker. Frenetic: A network programming
language. In ICFP, Sep 2011.

[12] David K Gifford, Pierre Jouvelot, Mark A Sheldon, and James W O’Toole. Re-
port on the fx-91 programming language. Technical report, DTIC Document,
1992.

[13] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-verified network con-
trollers. In PLDI, June 2013.

[14] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid isolation:
A slice abstraction for software-defined networks. In HotSDN, 2012.

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct 1969.

[16] C. A. R. Hoare, Bernhard M oller, Georg Struth, and Ian Wehrman. Concurrent
kleene algebra. In CONCUR, pages 399–414, 2009.

[17] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a
globally-deployed software defined WAN. In SIGCOMM, 2013.

[18] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. Covisor: A
compositional hypervisor for software-defined networks. In NSDI, May 2015.

[19] Cliff B Jones. Development methods for computer programs including a notion
of interference. Oxford University Computing Laboratory, 1981.

[20] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling packet
programs to reconfigurable switches. In NSDI, May 2015.

[21] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing the
”one big switch” abstraction in software-defined networks. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, pages 13–24, New York, NY, USA, 2013. ACM.

[22] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite
cacheflow in software-defined networks. In Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, HotSDN ’14, pages 175–180, New
York, NY, USA, 2014. ACM.

241

[23] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
Static checking for networks. In NSDI, 2012.

[24] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. I&C, 110(2):366–390, May 1994.

[25] Dexter Kozen. Kleene algebra with tests and commutativity conditions. In
TACAS, pages 14–33, Passau, Germany, March 1996.

[26] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems, 19(3):427–443, May 1997.

[27] Dexter Kozen. Kleene algebras with tests and the static analysis of programs.
Technical Report TR2003-1915, Computer Science Department, Cornell Univer-
sity, November 2003.

[28] Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimizations
using Kleene algebra with tests. In CL, Jul 2000.

[29] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whal-
ley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding ef-
fective optimization phase sequences. In Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool for Embedded Systems, LCTES ’03,
pages 12–23, New York, NY, USA, 2003. ACM.

[30] Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-
ordering problem using machine learning. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, pages 147–162, New York, NY, USA, 2012. ACM.

[31] Alex X. Liu, Chad R. Meiners, and Eric Torng. Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams. IEEE/ACM Trans.
Netw., 18(2):490–500, Apr 2010.

[32] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan.
Declarative routing: Extensible routing with declarative queries. In SIGCOMM,
2005.

[33] James McCauley, Aurojit Panda, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending SDN to large-scale networks. In ONS, 2013.

[34] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: En-
abling innovation in campus networks. SIGCOMM Computing Communications
Review, 38(2):69–74, 2008.

[35] Chad R. Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. Split: Optimizing
space, power, and throughput for tcam-based classification. In Proceedings of
the 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and

242

Communications Systems, ANCS ’11, pages 200–210, Washington, DC, USA,
2011. IEEE Computer Society.

[36] B. Möller. Calculating with pointer structures. In Algorithmic Languages and
Calculi. Proc. IFIP TC2/WG2.1 Working Conference, February 1997.

[37] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A com-
piler and run-time system for network programming languages. In POPL, Jan
2012.

[38] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. In NSDI, Apr 2013.

[39] Mike Neil. Root cause analysis for recent windows azure service interruption
in western europe. http://azure.microsoft.com/blog/2012/08/02/root-cause-
analysis-for-recent-windows-azure-service-interruption-in-western-europe/, 2012.

[40] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram Krish-
namurthi. A balance of power: Expressive, analyzable controller programming.
In HotSDN, 2013.

[41] Openflow switch specification, version 1.0.0. See https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.0.0.pdf, 2009.

[42] Recep Ozdag. Intel Ethernet Switch FM6000 Series - software defined network-
ing. See goo.gl/AnvOvX, 2012.

[43] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for network update. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages 323–334, New York, NY, USA,
2012. ACM.

[44] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[45] Cole Schlesinger, Michael Greenberg, and David Walker. Concurrent netcore:
From policies to pipelines. In Proceedings of the 19th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’14, pages 11–24, New
York, NY, USA, 2014. ACM.

[46] Scott Shenker. The future of networking, and the past of protocols. The Open
Networking Summit, 2011.

[47] O. Shmueli. Decidability and expressiveness aspects of logic queries. In PODS,
pages 237–249, 1987.

243

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
goo.gl/AnvOvX

[48] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
127–132, New York, NY, USA, 2013. ACM.

[49] The AWS Team. Summary of the amazon ec2 and amazon rds service disruption
in the us east region. https://aws.amazon.com/message/65648/, 2011.

[50] M Tofte and J P Talpin. Implementation of the typed lambda calculus using a
stack of regions. In POPL, January 1994.

[51] Steven R. Vegdahl. Phase coupling and constant generation in an optimizing
microcode compiler. In Proceedings of the 15th Annual Workshop on Micropro-
gramming, MICRO 15, pages 125–133, Piscataway, NJ, USA, 1982. IEEE Press.

[52] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive programming of
OpenFlow networks. In PADL, 2011.

[53] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A language for
high-level reactive network control. In HotSDN, pages 43–48, 2012.

[54] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and Paul
Hudak. Maple: Simplifying SDN programming using algorithmic policies. In
SIGCOMM, 2013.

[55] D. Whitfield and M. L. Soffa. An approach to ordering optimizing transfor-
mations. In Proceedings of the Second ACM SIGPLAN Symposium on Princi-
ples &Amp; Practice of Parallel Programming, PPOPP ’90, pages 137–146, New
York, NY, USA, 1990. ACM.

[56] Minlan Yu, Jennifer Rexford, Xin Sun, Sanjay G. Rao, and Nick Feamster. A sur-
vey of virtual LAN usage in campus networks. IEEE Communications Magazine,
49(7):98–103, 2011.

244

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 The Architecture of an SDN
	1.2 Contributions of this Dissertation
	1.3 Relation to Previous Work by the Author and Co-Authors

	2 A Network Policy Language
	2.1 Syntax and Semantics
	2.2 Equational Theory
	2.3 Policy in Practice: Network Isolation

	3 A Pipeline Configuration Language
	3.1 Syntax and Semantics
	3.2 Pipeline Models
	3.3 Metatheory

	4 Compiling from High-level Policies to Low-level Pipelines
	4.1 Single-table Compilation
	4.2 Pipeline Compilation
	4.2.1 Multicast Consolidation
	4.2.2 If De-nesting
	4.2.3 Field Extraction
	4.2.4 Table Fitting
	4.2.5 Combining the Compilation Passes

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation Setup
	5.3 Evaluation Results

	6 Related Work
	6.1 NetKAT
	6.2 Concurrent NetCore
	6.3 Compilation

	7 Summary and Future Work
	7.1 Building A Language of Actions
	7.2 Adopting Traditional Compilation Techniques
	7.3 Coordinating Optimizations

	A Correctness of the Isolation Algorithm
	B Correctness of the Concurrent NetCore Metatheory
	C Correctness of the Compilation Algorithms
	C.1 Single-table Compilation
	C.1.1 Star Elimination
	C.1.2 Switch Normal Form
	C.1.3 OpenFlow Normal Form
	C.1.4 Optimizations
	C.1.5 Compiling to Physical Tables

	C.2 Pipeline Compilation
	C.2.1 Useful Lemmas
	C.2.2 Refactoring Parallel Composition
	C.2.3 Refactoring Field Modification
	C.2.4 If De-nesting
	C.2.5 Table Replacement
	C.2.6 Dynamic Programming
	C.2.7 Combining Multicast Consolidation and Field Extraction

	Bibliography

