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Abstract

We present a type system and inference algorithm for a

rich subset of JavaScript equipped with objects, structural

subtyping, prototype inheritance, and first-class methods.

The type system supports abstract and recursive objects,

and is expressive enough to accommodate several standard

benchmarks with only minor workarounds. The invariants

enforced by the types enable an ahead-of-time compiler to

carry out optimizations typically beyond the reach of static

compilers for dynamic languages. Unlike previous inference

techniques for prototype inheritance, our algorithm uses

a combination of lower and upper bound propagation to

infer types and discover type errors in all code, including

uninvoked functions. The inference is expressed in a simple

constraint language, designed to leverage off-the-shelf fixed

point solvers. We prove soundness for both the type system

and inference algorithm. An experimental evaluation showed

that the inference is powerful, handling the aforementioned

benchmarks with no manual type annotation, and that the

inferred types enable effective static compilation.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features; D.3.4 [Pro-

gramming Languages]: Processors

Keywords object-oriented type systems, type inference,

JavaScript

1. Introduction

JavaScript is one of the most popular programming languages

currently in use [6]. It has become the de facto standard

in web programming, and its growing use in large-scale,

real-world applications—ranging from servers to embed-

ded devices—has sparked significant interest in JavaScript-

focused program analyses and type systems in both the aca-

demic research community and in industry.

In this paper, we report on a type inference algorithm for

JavaScript developed as part of a larger, ongoing effort to

enable type-based ahead-of-time compilation of JavaScript

programs. Ahead-of-time compilation has the potential to

enable lighter-weight execution, compared to runtimes that

rely on just-in-time optimizations [5, 9], without compromis-

ing performance. This is particularly relevant for resource-

constrained devices such as mobile phones where both perfor-

mance and memory footprint are important. Types are key to

doing effective optimizations in an ahead-of-time compiler.

JavaScript is famously dynamic; for example, it contains

eval for runtime code generation and supports introspective

behavior, features that are at odds with static compilation.

Ahead-of-time compilation of unrestricted JavaScript is not

our goal. Rather, our goal is to compile a subset that is

rich enough for idiomatic use by JavaScript developers.

Although JavaScript code that uses highly dynamic features

does exist [39], data shows that the majority of application

code does not require that flexibility. With growing interest in

using JavaScript across a range of devices, including resource-

constrained devices, it is important to examine the tradeoff

between language flexibility and the cost of implementation.

The JavaScript compilation scenario imposes several

desiderata for a type system. First, the types must be sound,

so they can be relied upon for compiler transformations.

Second, the types must impose enough restrictions to allow

the compiler to generate code with good, predictable perfor-

mance for core language constructs (Section 2.1 discusses

some of these optimizations). At the same time, the system

must be expressive enough to type check idiomatic coding

patterns and make porting of mostly-type-safe JavaScript

code easy. Finally, in keeping with the nature of the language,

as well as to ease porting of existing code, we desire powerful

type inference. To meet developer expectations, the infer-

ence must infer types and discover type errors in all code,
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including uninvoked functions from libraries or code under

development.

No existing work on JavaScript type systems and infer-

ence meets our needs entirely. Among the recently developed

type systems, TypeScript [8] and Flow [3] both have rich

type systems that focus on programmer productivity at the ex-

pense of soundness. TypeScript relies heavily on programmer

annotations to be effective, and both treat inherited properties

too imprecisely for efficient code generation. Defensive Java-

Script [15] has a sound type system and type inference, and

Safe TypeScript [36] extends TypeScript with a sound type

system, but neither supports prototype inheritance. TAJS [29]

is sound and handles prototype inheritance precisely, but it

does not compute types for uninvoked functions; the classic

work on type inference for SELF [12] has the same drawback.

Choi et al. [21] present a JavaScript type system targeting

ahead-of-time compilation that forms the basis of our type

system, but their work does not have inference and instead

relies on programmer annotations. See Section 6 for further

discussion of related work.

This paper presents a type system and inference algorithm

for a rich subset of JavaScript that achieves our goals. Our

type system builds upon that of Choi et al. [21], adding

support for abstract objects, first-class methods, and recursive

objects, each of which we found crucial for handling real-

world JavaScript idioms; we prove these extensions sound.

The type system supports a number of additional features such

as polymorphic arrays, operator overloading, and intersection

types in manually-written interface descriptors for library

code, which is important for building GUI applications.

Our type inference technique builds on existing literature

(e.g., [12, 23, 35]) to handle a complex combination of

language features, including structural subtyping, prototype

inheritance, first-class methods, and recursive types; we are

unaware of any single previous type inference technique that

soundly handles these features in combination.

We formulate type inference as a constraint satisfaction

problem over a language composed primarily of subtype con-

straints over standard row variables. Our formulation shows

that various aspects of the type system, including source-level

subtyping, prototype inheritance, and attaching methods to

objects, can all be reduced to these simple subtype constraints.

Our constraint solving algorithm first computes lower and

upper bounds of type variables through a propagation phase

(amenable to the use of efficient, off-the-shelf fixed-point

solvers), followed by a straightforward error-checking and

ascription phase. Our use of both lower and upper bounds

enables type inference and error checking for uninvoked func-

tions, unlike previous inference techniques supporting pro-

totype inheritance [12, 29]. As shown in Section 2.3, sound

inference for our type system is non-trivial, particularly for

uninvoked functions; we prove that our inference algorithm

is sound.

Leveraging inferred types, we have built a backend that

compiles type-checked JavaScript programs to optimized

native binaries for both PCs and mobile devices. We have

compiled slightly-modified versions of six of the Octane

benchmarks [1], which ranged from 230 to 1300 LOC, using

our compiler. The modifications needed for the programs to

type check were minor (see Section 5 for details).

Preliminary data suggests that for resource-constrained

devices, trading off some language flexibility for static com-

pilation is a compelling proposition. With ahead-of-time com-

pilation (AOTC), the six Octane programs incurred a signif-

icantly smaller memory footprint compared to running the

same JavaScript sources with a just-in-time optimizing en-

gine. The execution performance is not as fast as JIT engines

when the programs run for a large number of iterations, but is

acceptable otherwise, and vastly better than a non-optimizing

interpreter (details in Section 5).

We have also created six GUI-based applications for the

Tizen [7] platform, reworking from existing web applications;

these programs ranged between 250 to 1000 lines of code. In

all cases, all types in the user-written JavaScript code were

inferred, and no explicit annotations were required. We do

require annotated signatures of library functions, and we have

created these for many of the JavaScript standard libraries

as well as for the Tizen platform API. Experiences with and

limitations of our system are discussed in Section 5.

Contributions:

• We present a type system, significantly extending previous

work [21], for typing common JavaScript inheritance

patterns, and we prove the type system sound. Our system

strikes a useful balance between allowing common coding

patterns and enabling ahead-of-time compilation.

• We present an inference algorithm for our type system

and prove it sound. To our best knowledge, this algorithm

is the first to handle a combination of structural subtyping,

prototype inheritance, abstract types, and recursive types,

while also inferring types for uninvoked functions. This

inference algorithm may be of independent interest, for

example, as a basis for software productivity tools.

• We discuss our experiences with applying an ahead-of-

time compiler based on our type inference to several exist-

ing benchmarks. We found that our inference could infer

all the necessary types for these benchmarks automati-

cally with only slight modifications. We also found that

handling a complex combination of type system features

was crucial for these programs. Experimental data points

to the promise of ahead-of-time compilation for running

JavaScript on resource-constrained devices.

2. Overview

Here we give an overview of our type system and inference.

We illustrate some requirements and features of typing and

type inference by way of a simple example. We also highlight
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1 var v1 = { d : 1, // o1

2 m : function (x) { this.a = x + this.d }}

3 var v2 = { a : 2 } proto v1; // o2

4 v2.m(3);

5 v2.m("foo"); // type error in our system

6 var v3 = { b : 4 } proto v2; // o3

7 v3.m(4); // type error in our system

Figure 1: An example program to illustrate our type system.

proto 

d : 1

m  fun (x) ...

o1

proto 

a : “foo1” 

o2

proto 

b : 4

o3

a : 5
previous values of a 

after line 4:  4 

after line 3:  2

added at

line 7

Figure 2: Runtime heap for Figure 1 at line 6.

some challenges in inference, and show in more detail why

previous techniques are insufficient for our needs.

2.1 Type System Requirements

Our type system prevents certain dynamic JavaScript behav-

iors that can compromise performance in an AOTC scenario.

In many cases, such behaviors also reflect latent program

bugs. Consider the example of Figure 1. We refer to the ob-

ject literals as o1, o2, and o3. To keep our examples readable,

we use a syntactic sugar for prototype inheritance: the expres-

sion {a : 2} proto o1 makes o1 the prototype parent of the

{a: 2} object, corresponding to the following JavaScript:

function C() { this.a = 2 } // constructor

C.prototype = o1; new C()

In JavaScript, the v2.m("foo") invocation (line 5) runs

without error, setting v2.a to "foo1". In SJS, we do not allow

this operation, as v2.a was initialized to an integer value;

such restrictions are standard with static typing.

JavaScript field accesses also present a challenge for

AOTC. Figure 2 shows a runtime heap layout of the three

objects allocated in Figure 1 (after line 6). In JavaScript, a

field read x.f first checks x for field f, and continues up x’s

prototype chain until f is found. If f is not found, the read

evaluates to undefined. Field writes x.f = y are peculiar. If

f exists in x, it is updated in place. If not, f is created in x,

even if f is available up the prototype chain. This peculiarity

is often a source of bugs. For our example, the write to this.a

within the invocation v3.m(4) on line 7 creates a new slot in

o3 (dashed box in Figure 2), rather than updating o2.a.

Besides being a source of bugs, this field write behavior

prevents a compiler from optimizing field lookups. If the set

of fields in every object is fixed at the time of allocation—

a fixed object layout [21]—then the compiler can use a

constant indirection table for field offsets.1 Fixed layout also

establishes the availability of fields for reading / writing,

obviating the need for runtime checks.2

In summary, our type system must enforce the following

properties:

• Type compatibility, e.g., integer and string values cannot

be assigned to the same variable.

• Access safety of object fields: fields that are neither

available locally nor in the prototype chain cannot be

read; and fields that are not locally available cannot be

written.

These properties promote good programming practices and

make code more amenable to compilation. Note that detection

of errors that require flow-sensitive reasoning, like null

dereferences, is out of scope for our type system; extant

systems like TAJS [29] can be applied to find such issues.

2.2 The Type System

Access safety. In our type system, the fields in an object

type O are maintained as two rows (maps from field names to

types), Or for readable fields and Ow for writeable fields.

Readable fields are those present either locally or in the

prototype chain, while writeable fields must be present locally

(and hence must also be readable). Since o1 in Figure 1 only

has local fields d and m, we have Or
1 = Ow

1 = 〈d,m〉.3 For

o2, the readable fields Or
2 include local fields 〈a〉 and fields

〈d,m〉 inherited from o1, so we have Or
2 = 〈d,m, a〉 and

Ow
2 = 〈a〉. Similarly, Or

3 = 〈d,m, a, b〉 and Ow
3 = 〈b〉. The

type system rejects writes to read-only fields; e.g., v2.d = 2

would be rejected.

Detecting that the call v3.m(4) on line 7 violates access

safety is less straightforward. To handle this case, the type

system tracks two additional rows for certain object types:

the fields that attached methods may read (Omr), and those

that methods may write (Omw). The typing rules ensure that

such method-accessed fields for an object type include the

fields of the receiver types for all attached methods. Let Tm

be the receiver type for method m (line 2). Based on the

uses of this within m, we have T r
m = 〈d, a〉 and Tw

m = 〈a〉
(again, writeable fields must be readable). Since m is the

only method attached to o1, we have Omr
1 = T r

m = 〈d, a〉
and Omw

1 = Tw
m = 〈a〉. Since o2 and o3 inherit m and have

no other methods, we also have Omr
3 = Omr

2 = 〈d, a〉 and

Omw
3 = Omw

2 = 〈a〉.
With these types, we have a ∈ Omw

3 and a 6∈ Ow
3 :

i.e., a method of O3 can write field field a, which is not

locally present. Hence, the method call v3.m(4) is unsafe.

1 The compiler may even be able to allocate a field in the same position in

all containing objects, eliminating the indirection table.
2 When dynamic addition and deletion of fields is necessary, a map rather

than an object is more suited; see Section 5.1.
3 For brevity, we elide the field types here, as the discussion focuses on which

fields are present.
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The type system considers O3 to be abstract, and method

invocations on abstract types are rejected. (Types for which

method invocations are safe are concrete.) Similarly, O1 is

also abstract. Note that rejecting abstract types completely is

too restrictive: JavaScript code often has prototype objects

that are abstract, with methods referring to fields declared

only in inheritors.

The idea of tracking method-accessed fields follows the

type system of Choi et al. [20, 21], but they did not distinguish

between mr and mw, essentially placing all accessed fields

in mw. Their treatment would reject the safe call at line 4,

whereas with mr, we are able to type it.4

Subtyping. A type system for JavaScript must also support

structural subtyping between object types to handle common

idioms. But, a conflict arises between structural subtyping and

tracking of method-accessed fields. Consider the following

code:

1 p = cond()

2 ? { m : fun() { this.f = 1 }, f: 2 } // o1

3 : { m : fun() { this.g = 2 }, g: 3 } // o2

4 p.m();

Both o1 and o2 have concrete types, as they contain all fields

accessed by their methods. Since m is the only common field

between o1 and o2, by structural subtyping, m is the only field

in the type of p. But what should the method-writeable fields

of p be? A sound approach of taking the union of such fields

from o1 and o2 yields 〈f, g〉. But, this makes the type of p

abstract (neither f nor g is present in p), prohibiting the safe

call of p.m().

To address this issue, we adopt ideas from previous

work [21, 33] and distinguish prototypal types, suitable for

prototype inheritance, from non-prototypal types, suitable

for structural subtyping. Non-prototypal types elide method-

accessed fields, thereby avoiding bad interactions with struc-

tural subtyping. For the example above, we can assign p

a non-prototypal concrete type, thereby allowing the p.m()

call. However, an expression {...} proto p would be dis-

allowed: without method-accessed field information for p,

inheritance cannot be soundly handled. For further details,

see Section 3.3.

2.3 Inference Challenges

As noted in Section 1, we found that no extant type inference

technique was suitable for our needs. The closest techniques

are those that reason about prototype inheritance precisely,

like type inference for SELF [12] and the TAJS system for

JavaScript [29]. Both of these systems work by tracking

which values may flow to an operation (a “top-down” ap-

proach), and then ensuring the operation is legal for those

values. They also gain significant scalability by only ana-

lyzing reachable code, as determined by the analysis itself.

4 Throughout the paper, we call out extensions we made to enhance the

power of Choi et al.’s type system.

But, this approach cannot infer types or find type errors in

unreachable code, e.g., a function under development that is

not yet invoked. Consider this example:

1 function f(x) {

2 var y = -x;

3 return x[1];

4 }

5 f(2);

Without the final call f(2), the previous techniques would

not find the (obvious) type error within f. This limitation is

unacceptable, as developers expect a compiler to report errors

in all code.

An alternative inference approach is to compute types

based on how variables/expressions are used (a “bottom-up”

approach), and then check any incoming values against these

types. Such an approach is standard in unification-style infer-

ence algorithms, combined with introduction of parametric

polymorphism to generalize types as appropriate [26]. Un-

fortunately, since our type system has subtyping, we cannot

apply such unification-based techniques, nor can we easily

infer parametric polymorphism.

Instead, our inference takes a hybrid approach, tracking

value flow in lower bounds of type variables and uses in

upper bounds. Both bounds are sets of types, and the final

ascribed type must be a subtype of all upper bound types and

a supertype of all lower bound types. Upper bounds enable

type inference and error discovery for uninvoked functions,

e.g., discovery of the error within f above.

If upper bounds alone under-constrain a type, lower

bounds provide a further constraint to inform ascription. For

example, given the identity function id(x) { return x; },

since no operations are performed on x, upper bounds give

no information on its type. However, if there is an invocation

id("hi"), inference can use the lower bound information

from "hi" to ascribe the type string → string. Note that as

in other systems [3, 8], we could combine our inference with

checking of user-written polymorphic types, e.g., if the user

provided a type T → T (T is a type variable) for id.

Once all upper and lower bounds are computed, an as-

signment needs to be made to each type variable. A natural

choice is the greatest lower bound of the upper bounds, with a

further check that the result is a supertype of all lower bound

types. However, if upper and lower bounds are based solely

on value flow and uses, type variables can be partially con-

strained, with ∅ as the upper bound (if there are no uses) or

the lower bound (if no values flow in). In the first case, since

our type system does not include a top type, 5 it is not clear

what assignment to make. This is usually not a concern in

unification-based analyses, which flow information across as-

signments symmetrically, but it is an issue in subtyping-based

analyses such as ours.

5 We exclude ⊤ from the type system to detect more errors; see discussion

in Section 4.2.
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Particular care thus needs to be taken to soundly assign

type variables whose upper bound is empty. A sound choice

would be to simply fail in inference, but this would be too

restrictive. We could compute an assignment based on the

lower bound types, e.g., their least upper bound. But this

scheme is unsound, as shown by the following example:

function f(x) {

var y = x; y = 2; return x.a+1;

}

Assume f is uninvoked. Using a graphical notation (edges

reflect subtyping), the relevant constraints for this code are:

X r 〈a : int〉 Y r int

x has no incoming value flow, but it is used as an object with

an integer a field (shown as the X r −→ 〈a : int〉 edge). For

y, we see no uses, but the integer 2 flows into it (shown as the

Y r ←− int edge). A technique based solely on value flow and

uses would compute the upper bound of X r as {〈a : int〉},
the lower bound of Y r as {int}, and the lower bound of X r

and upper bound of Y r as ∅. But, ascribing types based on

these bounds would be unsound: they do not capture the fact

that if x is ascribed an object type, then y must also be an

object, due to the assignment y = x.

Instead, our inference strengthens lower bounds based

on upper bounds, and vice-versa. For the above case, bound

strengthening yields the following constraints (edges due to

strengthening are dashed):

⊥row X r 〈a : int〉 Y r int 〈 〉

Given the type 〈a : int〉 in the upper bound of X r, we

strengthen X r’s lower bound to ⊥row (a subtype of all rows),

as we know that any type-correct value flowing into x must

be an object. As Y r is now reachable from ⊥row, ⊥row is

added to Y r’s lower bound. With this bound, the algorithm

strengthens Y r’s upper bound to 〈 〉, a supertype of all rows.

Given these strengthened bounds, inference tries to ascribe an

object type to y, and detects a type error with int in Y r’s lower

bound, as desired. Apart from aiding in correctness, bound

strengthening simplifies ascription, as any type variable can

be ascribed the greatest-lower bound of its upper bound

(details in Section 4.2).

3. Terms, Types, and Constraint Generation

This section details the terms and types for a core calculus

based on that of Choi et al. [20], modelling a JavaScript frag-

ment equipped with integers, objects, prototype inheritance,

and methods. The type system includes structural subtyping,

abstract types, and recursive types. As this paper focuses on

inference, rather than presenting the typing relation here, we

show the constraint generation rules for inference instead,

which also capture the requirements for terms to be well-

fields a ∈ A
expressions e ::= n | let x = e1 in e2 | x | x := e1

| {·} | {a1 : e1, . . . , an : en} proto ep | null | this
| e.a | e1.a := e2 | function (x) {e1} | e1.a (e2)

Figure 3: Syntax of terms.

types τ, σ ∈ T ::= int | ν | α |
| [ν] τ1 ⇒ τ2 | [·] τ1 ⇒ τ2

rows r, w,mr,mw ::= 〈a1 : τ1, . . . , an : τn〉
base types ρ ::= {r | w}
object types ν ::= ρq | µα.ν
qualifiers q ::= P (mr,mw) | NC | NA

Figure 4: Syntax of types.

typed. An associated technical report presents the full typing

relation [18].

3.1 Terms

Figure 3 presents the syntax of the calculus. The metavariable

a ranges over a finite set of fieldsA, which describe the fields

of objects. Expressions e include base terms n (which we take

to be integers), and variable declaration (let x = e1 in e2), use

(x), and assignment (x := e). An object is either the empty ob-

ject {·} or a record of fields {a1 : e1, . . . , an : en} proto ep,

where ep is the object’s prototype. We also have the null and

the receiver, this.

Field projection e.a and assignment e1.a := e2 take the

expected form. The calculus includes first-class methods (de-

clared with the function syntax, as in JavaScript), which must

be invoked with a receiver argument. Our implementation

also handles first-class functions, but they present no addi-

tional complications for inference beyond methods, so we

omit them here for simplicity. Additional details can be found

in the extended version [18].

3.2 Types

Figure 4 presents the syntax of types. Types τ include a base

type (integers), objects (ν), and two method types: unattached

methods ([τr] τ1 ⇒ τ2), which retain the receiver type τr, and

attached methods ([·] τ1 ⇒ τ2), wherein the receiver type is

elided and assumed to be the type of the object to which the

method is attached. (If e1.a := e2 assigns a new method to

e1.a, e2 is typed as an unattached method. Choi et al [21]

restricted e2 to method literals, whereas our treatment is more

general.)

Object types comprise a base type, ρ, and a qualifier, q.

The base type is a pair of rows (finite maps from names to

types), one for the readable fields r and one for the writeable
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fields w.6 Well-formedness for object types (detailed in

Section 3.3) requires that writeable fields are also readable.

We choose to repeat the fields of w into r in this way because

it enables a simpler mathematical treatment based on row

subtyping. Object types also contain recursive object types

µα.ν, where α is bound in ν and may appear in field types.

Object qualifiers q describe the field accesses performed

by the methods in the type, required for reasoning about

access safety (see Section 2.2). A prototypal qualifier

P (mr,mw) maintains the information explicitly with two

rows, one for fields readable by methods of the type (mr),

and another for method-writeable fields (mw). At a method

call, the type system ensures that all method-readable fields

are readable on the base object, and similarly for method-

writeable fields. The NC and NA qualifiers are used to

enable structural subtyping on object types, and are discussed

further in Section 3.3.

3.3 Subtyping and Type Equivalence

Any realistic type system for JavaScript must support struc-

tural subtyping for object types. Figure 5 presents the subtyp-

ing rules for our type system. In the premises, we sometimes

write τ1 ≡ τ2 as a shorthand for τ1 <: τ2 ∧ τ2 <: τ1, and

similarly r1 ≡ r2 as a shorthand for r1 <: r2 ∧ r2 <: r1.

The S-ROW rule enables width subtyping on rows and row

reordering, and the S-NONPROTO rule lifts those properties to

nonprototypal objects (ignore the qualifier k for the moment).

Note from S-ROW that overlapping field types must be equiv-

alent, disallowing depth subtyping—such subtyping is known

to be unsound with mutable fields [11, 27]. Depth subtyping

would be sound for read-only fields, but we disallow it to

simplify inference.

As discussed in Section 2.2, there is no good way to

preserve information about method-readable and method-

writeable fields across use of structural subtyping. Hence,

other than row reordering enabled by S-ROW and S-PROTO,

there is no subtyping between distinct prototypal types, which

are the ones that carry method-readable and method-writeable

information. To employ structural subtyping, a prototypal

type must first be converted to a non-prototypal NC or

NA type (distinction to be discussed shortly), using the

S-PROTOCONC or S-PROTOABS rules. After this conversion,

structural subtyping is possible using S-NONPROTO. Since

non-prototypal types have no specific information about

which fields are accessed by methods, they cannot be used

for prototype inheritance or method updates; see Section 3.5.

The type system also makes a distinction between concrete

object types, on which method invocations are allowed, and

abstract types, for which invocations are prohibited. For

prototypal types, concreteness can be checked directly, by

ensuring that all method-readable fields are readable on the

object and similarly for method-writeable fields, i.e., r <:mr

6 Note that row types cannot be ascribed to terms directly; they only appear

as part of object types.

S-ROW
∀a ∈ dom(r′).a ∈ dom(r) ∧ r[a] ≡ r

′[a]

r <: r′

S-NONPROTO
r1 <: r2 w1 <: w2 k = NC ∨ k = NA

{r1 | w1}
k
<: {r2 | w2}

k

S-PROTO
r1 ≡ r2 w1 ≡ w2 mr1 ≡ mr2 mw1 ≡ mw2

{r1 | w1}
P(mr1,mw1) <: {r2 | w2}

P(mr2,mw2)

S-PROTOCONC
r <: mr w <: mw

{r | w}P(mr,mw)
<: {r | w}NC

S-PROTOABS
{r | w}P(mr,mw)

<: {r | w}NA

S-CONCABS
{r | w}NC

<: {r | w}NA

S-METHOD
[τ ] τ1 ⇒ τ2 <: [·] τ1 ⇒ τ2

S-TRANS
τ1 <: τ2 τ2 <: τ3

τ1 <: τ3
S-REFL

τ <: τ

WF-NONOBJECT
τ is not an object type or a type variable

∆ 
 τ

WF-NC
r <: w ∀a ∈ dom(r). ∆ 
 r[a]

∆ 
 {r | w}NC

WF-NA
r <: w ∀a ∈ dom(r). ∆ 
 r[a]

∆ 
 {r | w}NA

WF-P

r <: w ∀a ∈ dom(r). ∆ 
 r[a]
mr <: mw ∀a ∈ dom(mr). ∆ 
 mr[a]
∀a ∈ dom(mr) ∩ dom(r). mr[a] ≡ r[a]

∆ 
 {r | w}P(mr,mw)

WF-REC
∆, α 
 ν

∆ 
 µα.ν
WF-VAR

∆, α 
 α

Figure 5: Subtyping and object-type well-formedness.

and w <: mw (the assumptions of the S-PROTOCONC rule).

For non-prototypal types, we employ separate qualifiers

NC and NA to distinguish concrete from abstract. Rule

S-PROTOCONC only allows concrete prototypal types to be

converted to an NC type, whereas rule S-PROTOABS allows

any prototypal type to be converted to an NA type. The type

system only allows a method call if the receiver type can be

converted to an NC type (see Section 3.5). The S-CONCABS

rule allows any NC type to be converted to the corresponding

NA type, as this only removes the ability to invoke methods.
Revisiting the example in Figure 1, here are the types for

objects O1, O2 and O3.

O1 : {〈d : int,m : [·] int ⇒ void〉 | 〈d,m〉}P(〈d,a〉,〈a〉)

O2 : {〈d : int,m : [·] int ⇒ void, a : int〉 | 〈a〉}P(〈d,a〉,〈a〉)

O3 : {〈d : int,m : [·] int ⇒ void, a : int, b : int〉 | 〈b〉}P(〈d,a〉,〈a〉)

(We omit writing the types of fields in rows duplicatively.)

In view of the subtyping relation presented above, the con-

version of the prototypal type of O2 to a NC type is allowed
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o1 : {〈d,m〉 | 〈d,m〉}P(〈d,a〉,〈a〉)

o2 : {〈d,m, a〉 | 〈a〉}P(〈d,a〉,〈a〉)

o4 : {〈d〉 | 〈d〉}P(〈 〉,〈 〉)

o3 : {〈d,m, a, b〉 | 〈b〉}P(〈d,a〉,〈a〉)

{〈d,m, a〉 | 〈a〉}NC

{〈d,m〉 | 〈d,m〉}NA

{〈d,m, a〉 | 〈a〉}NA {〈d,m, a, b〉 | 〈b〉}NA

{〈d〉 | 〈d〉}NA

{〈d〉 | 〈 〉}NA

{〈 〉 | 〈 〉}NA

Figure 6: Lattice of object types

(by S-PROTOCONC), so a method call at line line 4 is allowed.

By contrast, the conversion of the prototypal type of O3 to

a NC type is not allowed (because the condition w <: mw

is not satisfied in S-PROTOCONC), and so the method call at

line 7 is disallowed. Figure 6 gives a graphical view of the

associated type lattice, showing the order between prototypal,

NC and NA types.

The NA qualifier aids in expressivity. Consider extending

Figure 1 as follows:

8 var v4 = cond() ?

9 v3 :

10 { d : 2 } // o4

The type of O4 is {〈d : int〉 | 〈d〉}P(〈 〉,〈 〉)
. To ascribe a

type to v4, we need to find a common supertype of the

types of O3 and O4. We cannot simply upcast O3 to the

type of O4 because there is no subtyping on prototypal

types; S-NONPROTO does not apply. We also cannot apply

S-PROTOCONC to O3, as O3 is not concrete. However, we can

use S-PROTOABS and S-NONPROTO, in that order, to upcast

the type of O3 to {〈d : int〉 | 〈 〉}NA
(see Figure 6). This type

is also a supertype of the type of O4, and therefore, a suitable

type to be ascribed to v4.7 NA serves as a top element in the

object type lattice, which also simplifies type ascription as

we will illustrate in Section 4.2.

Rule S-METHOD introduces a limited form of method

subtyping to allow an unattached method to be attached to

an object, thereby losing its receiver type. This stripping

of receiver types is important for object subtyping. In the

subtyping example in Section 2.2, without attached methods,

o1 and o2 would not have a common supertype with m present,

7 While the type system of Choi et al. [21] restricts subtyping on prototypal

types, their system does not have the notion of NA, and hence cannot type

the example above.

as the receiver types for their m methods would differ; this

would make p.m() a type error. We exclude any other form

of method subtyping, as we have not encountered a need for

it in practice. More general function/method subtyping poses

additional challenges for inference, due to contravariance,

but extant techniques could be adopted to handle these

issues [22, 23]; we plan to do so when a practical need arises.

Subtyping is reflexive and transitive. Recursive types are

equi-recursive and admit α-equivalence, that is:

µα.ν <: ν [α 7→ µα.ν]

ν [α 7→ µα.ν] <: µα.ν

µα.ν <: µβ.(ν[α 7→ β])

which directly implies:

µα.ν ≡ ν [α 7→ µα.ν]

µα.ν ≡ µβ.(ν[α 7→ β])

Note that it is possible to expand a recursive type and then

apply rule S-NONPROTO or S-PROTO to achieve a form of

width subtyping.

Figure 5 also shows the well-formedness for types, ∆ 
 τ ,

in the context ∆ representing a set of bound variables.

All non-object non-variable types are well-formed (rule

WF-NONOBJECT). For object types, well-formedness requires

that any writeable field is also readable, and that all field types

are also well-formed (rules WF-NC and WF-NA). In proto-

typal types, well-formedness further requires that method-

writeable fields are also method-readable, and that for any

field a that is both readable and method-readable, the mr and

r rows agree on a’s type (rule WF-P). Finally, rules WF-REC

and WF-VAR respectively introduce and eliminate type vari-

ables to enable well-formedness of recursive types.

3.4 Constraint Language

Here, we present the constraint language used to express our

type inference problem. Constraints primarily operate over

families of row variables, rather than directly constraining

more complex source-level object types. Section 3.5 reduces

inference for the source type system to this constraint lan-

guage, and Section 4 gives an algorithm for solving such

constraints.

Figure 7 defines the constraint language syntax. The lan-

guage distinguishes type variables, which represent source-

level types, and row variables, which represent the various

components of a source-level object type. Each type vari-

able X has five corresponding row variables: X r, Xw, Xmr,

Xmw, and Xall. The first four correspond directly to the r,

w, mr, and mw rows from an object type. To enforce the

condition 
 {r | w}q (Figure 5) on all types, we impose the

well-formedness conditions in Figure 7 on all X . The last
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type variables X,Y range over source types

variable sorts s ::= r | w | mr | mw | all
row variables Xs, Y s range over row / non-object types

literals L ::= int | ⊥row | 〈. . . , a : X, . . .〉
| [XR]X1 ⇒ X2

constraints C ::= L <: Xs | Xs <: L | Xs <: Y s

| C ∧ C

| Xs <: Y s\ {a1, . . . , an}
| proto(X) | concrete(X)
| strip(X)
| attach(Xb, Xf , Xv)

acceptance criteria A ::= notmethod(X) | notproto(X)

well-formedness Xall <: X r <: Xw

∧ Xall <: Xmr <: Xmw

Figure 7: Constraint language. We give the language syntax

above the line, and well-formedness constraints below.

variable, Xall, is used to ensure that types of fields in both r

and mr are equivalent; if ascription fails for Xall, there must

be some inconsistency between X r and Xmr.

Type literals include int, unattached methods, and rows.

The ⊥row type ensures a complete row subtyping lattice and

is used in type propagation (see Section 4.1). To handle

non-object types, row variables are “overloaded” and can

be assigned non-object types as well. Our constraints ensure

that if any row variable for X is assigned a non-row type τ ,

then all row variables for X will be assigned τ , and hence X

should map to τ in the final ascription.

The first three constraint types introduced in Figure 7

express subtyping over literals and row variables. We write

Xs ≡ L as a shorthand for L<:Xs∧Xs <: L and Xs ≡ Y t

as a shorthand for Xs <: Y t ∧ Y t <: Xs. Constraints can

be composed together using the ∧ operator. A constraint

Xs <: Y s\ {a1, . . . , an} means that Xs must be a subtype

of the type obtained by removing the fields a1, . . . , an from

Y s. Such constraints are needed for handling prototype

inheritance, discussed further in Section 3.5.

The proto(X) and concrete(X) constraints enable infer-

ence of object type qualifiers. Constraint proto(X) means the

ascribed type for X must be prototypal, while concrete(X)
means the type for X must be a subtype of an NC type.

The strip(X) constraint ensures X is assigned an attached

method type, with no receiver type. Conversion of unattached

method types to attached occurs during ascription (Sec-

tion 4.2), so the constraint syntax only includes unattached

method types.

The constraint attach(Xb, Xf , Xv) in Figure 7 handles

method attachment to objects. For a field assignment e1.a :=
e2, Xb, Xf , and Xv respectively represent the type of e1, the

type of a in e1’s (object) type, and the type of e2. Intuitively,

this constraint ensures the following condition:

(X r

v <: [XR] _⇒ _) =⇒ (proto(Xb) ∧

Xmr

b <: X r

R ∧Xmw

b <: Xw

R ∧ strip(Xf ))

That is, when Xv is an unattached method type with receiver

XR, then Xb is prototypal, its method-readable and method-

writeable fields must respectively include the readable and

writeable fields of XR, and Xf is an attached method type.

Note that attach(Xb, Xf , Xv) is not a macro for the above

condition, as we do not directly support an implication

operator in the constraint language. Instead, the condition

is enforced directly during constraint propagation (Figure 10,

Rule (xii)).

The acceptance criteria in Figure 7 are additional con-

ditions on solutions that need only be checked after the

constraints have been solved. The two possible criteria are

checking that a variable is not assigned a method type,

notmethod(X), and ensuring a variable is not assigned a

prototypal type, notproto(X).

3.5 Constraint Generation

Constraint generation takes the form of a judgement

XR,Γ ⊢ e : X | C,

to be read as: in a context with receiver type XR and inference

environment Γ, expression e has type X such that constraints

in C are satisfied. Figure 8 presents rules for constraint

generation; see Section 4.1 for an example.

Rules C-INT and C-VAR generate straightforward con-

straints. The constraints for C-OBJEMP ensure the empty

object is assigned type {· | ·}P(·,·)
. The rule C-THIS is the

only rule directly using the carrier’s type XR. The constraint

Xw <: 〈 〉 in rule C-NULL ensures that X is assigned an

object type. (Recall that X r <: Xw.)

The rule for variable declaration C-VARDECL passes on

the constraints generated by its subexpressions (C1, C2), with

additional constraints Y r
1 <: X r

1 ∧ Y w
1 <: Xw

1 , which are

sufficient to ensure that the type Y1 of the expression e1 is a

subtype of the fresh inference variable X1 ascribed to x in

the environment (no constraint on Y mr
1 , Xmr

1 , Y mw
1 or Xmw

1

is needed). Constraining both the r and w rows is consistent

with the S-NONPROTO subtyping rule (Figure 5). We put x

in the initialization scope of e1 in order to allow for the

definition of recursive functions.

The C-METHDECL rule constrains the type of the body e

using fresh variables Y1 and YR for the parameter and receiver

types. YR is constrained to be non-prototypal and concrete,

as in any legal method invocation, the receiver type must

be a subtype of an NC type. (Recall that prototypal types,

if they are concrete, can be safely cast to NC.) The rule

for method application C-METHAPP ensures that the type

X1 of e1 is concrete, and that its field a has a method type
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XR,Γ ⊢ e : X | C
C-INT

fresh X

XR,Γ ⊢ n : X | X r ≡ int
C-VAR

Γ(x) = X

XR,Γ ⊢ x : X | ∅
C-THIS

XR,Γ ⊢ this : XR | ∅

C-VARDECL
XR,Γ [x 7→ X1] ⊢ e1 : Y1 | C1 fresh X1 XR,Γ [x 7→ X1] ⊢ e2 : X | C2

XR,Γ ⊢ let x = e1 in e2 : X | C1 ∧ C2 ∧ Y
r

1 <: X r

1 ∧ Y
w

1 <: Xw

1

C-VARUPD
x : X1 ∈ Γ XR,Γ ⊢ e1 : X | C1

XR,Γ ⊢ x := e1 : X | C1 ∧X
r
<: X r

1 ∧X
w
<: Xw

1

C-NULL
fresh X

XR,Γ ⊢ null : X | Xw
<: 〈 〉

C-METHDECL
fresh YR, Y1, X has_this(e) YR,Γ [x 7→ Y1] ⊢ e : Y2 | C

XR,Γ ⊢ function (x) {e} : X | C ∧ Y
w

R <: 〈 〉 ∧ concrete(YR) ∧ notproto(YR) ∧X
r ≡ ([YR]Y1 ⇒ Y2)

C-METHAPP
fresh XM , YR, X3, X XR,Γ ⊢ e1 : X1 | C1 XR,Γ ⊢ e2 : X2 | C2

XR,Γ ⊢ e1.a (e2) : X | C1 ∧ C2 ∧X
r

1 <: 〈a : XM 〉 ∧X
r

M ≡ ([YR]X3 ⇒ X) ∧ strip(XM ) ∧ concrete(X1)
∧ concrete(YR) ∧ Y

w

R <: 〈 〉 ∧ notproto(YR) ∧X
r

2 <: X r

3 ∧X
w

2 <: Xw

3

C-OBJEMP
XR,Γ ⊢ {·} : X | proto(X) ∧X

r ≡ 〈 〉 ∧X
mr ≡ 〈 〉

C-ATTR
fresh X XR,Γ ⊢ e : X1 | C

XR,Γ ⊢ e.a : X | C ∧X
r

1 <: 〈a : X〉 ∧ notmethod(X)

C-ATTRUPD
fresh Xf XR,Γ ⊢ e1 : Xb | C1 XR,Γ ⊢ e : Xv | C2

XR,Γ ⊢ e1.a := e : Xv | C1 ∧ C2 ∧X
w

b <: 〈a : Xf 〉 ∧X
r

v <: X r

f ∧X
w

v <: Xw

f ∧ attach(Xb, Xf , Xv)

C-OBJLIT
fresh X ∀i ∈ 1..n. fresh Xi ∀i ∈ 1..n. XR,Γ ⊢ ei : Yi | Ci XR,Γ ⊢ ep : Xp | Cp

XR,Γ ⊢ {a1 : e1, . . . , an : en} proto ep : X | Cp ∧
∧

i

(Ci ∧ Y
r

i <: X r

i ∧ Y
w

i <: Xw

i ∧ attach(X,Xi, Yi))

∧ X
w ≡ 〈a1 : X1, . . . , an : Xn〉 ∧X

r
<: X r

p ∧X
r

p <: X r\ {a1, . . . , an}
∧ proto(X) ∧ proto(Xp) ∧X

mr
<: Xmr

p ∧X
mw

<: Xmw

p

Figure 8: Constraint generation.

XM with appropriate argument type X3 and return type X .

The strip(XM ) constraint ensures XM is an attached method

type. Note that a relation between X1 and YR is ensured by

an attach constraint when method a is attached to object e1,

following C-ATTRUPD or C-OBJLIT.

The last three rules deal more directly with objects. Con-

straint generation for attribute use C-ATTR applies to non-

methods (for methods, C-METHAPP is used instead); the rule

generates constraints requiring that e has an object type X1

with a readable field a, such that a does not have a method

type (preventing detaching of methods). The attribute up-

date rule C-ATTRUPD constrains a to be a writable field of

e1 (Xw

b <: 〈a : Xf 〉), and ensures that Xf is a supertype of

e2’s type Xv. Finally, it uses the attach constraint to handle

a possible method update.

Finally, the rule C-OBJLIT imposes constraints govern-

ing object literals with prototype inheritance. Its constraints

dwarf those of other rules, as object literals encompass

potential method attachment for each field (captured by

attach(Xl, Xi, Yi)) in addition to prototype inheritance.

For the literal type X , the constraints ensure that the

writeable fields Xw are precisely those declared in the

literal. The readable fields must include those inherited

from the prototype (X r <: X r
p); note that X r <: Xw is

imposed by well-formedness. Furthermore, the constraint

X r
p <: X r\ {a1, . . . , an} ensures that additional readable

fields do not appear “out of thin air,” by requiring that any

Oall

2

Or

2

Ow

2

Omr

2

Omw

2

V all

1

V r

1

V w

1

V mr

1

V mw

1

Oall

1

Or

1

Ow

1

Omr

1

Omw

1

〈d : int,m : M〉〈a : int〉

Y r

R

Y w

R

〈d : D〉

〈a : A〉

\ {a}

Figure 9: Selected constraints for the example of Figure 1.

fields in X r apart from the locally-present a1, . . . , an be

present in the prototype. Finally, we ensure both X and Xp

are prototypal, and that any method-accessed fields from Xp

are also present in X .

Example Figure 9 shows a graph representation of some

constraints for o1, o2, and v1 from lines 1–3 of Figure 1.

Nodes represent row variables and type literals, with variable

names matching the corresponding program entities (YR cor-

responds to this on line 2). Each edge Xs → Y t represents

a constraint Xs <: Y t. Black solid edges represent well-
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formedness constraints (Figure 7), while blue solid edges

represent constraints generated from the code (Figure 8).

Dashed or dotted edges are added during constraint solving,

and will be discussed in Section 4.1.

We first discuss constraints for the body of the method

declared on line 2. For the field read this.d, the C-ATTR

rule generates Y r

R → 〈d : D〉. Similarly, the C-ATTRUPD rule

generates Y w

R → 〈a : A〉 for the write to this.a.

For the containing object literal o1, the C-OBJLIT rule

creates row variables for type O1 and edges Ow
1 ↔ 〈d :

int,m : M〉 (due to type equality). It also generates a

constraint attach(O1,M, F ) (not shown in Figure 9) to

handle method attachment to field m (F is the type of

the line 2 function); we shall return to this constraint in

Section 4.1. The assignment to v1 yields the V1 row variables

and the Or
1 → V r

1 and Ow
1 → V w

1 edges via C-VARDECL.8

For o2 on line 3, C-OBJLIT yields the Ow
2 ↔ 〈a : int〉

edges for the declared a field. The use of v1 as a prototype

yields the constraints Or
2 → V r

1 , Omr
2 → V mr

1 , and Omw
2 →

V mw
1 , capturing inheritance. We also have V r

1

\{a}
−−−→ Or

2 to

prevent "out of thin air" readable fields on O2. Finally, we

generate proto(V1) (not shown) to ensure V1 gets a prototypal

type.

4. Constraint Solving

Constraint solving proceeds in two phases. First, type prop-

agation computes lower and upper bounds for every row

variable, extending techniques from previous work [22, 35].

Then, type ascription checks for type errors, and, if none

are found, computes a satisfying assignment for the type

variables.

4.1 Type Propagation

Type propagation computes a lower bound ⌊Xs⌋ and upper

bound ⌈Xs⌉ for each row variable Xs appearing in the

constraints, with each bound represented as a set of types.

Intuitively, Xs must be ascribed a type between its lower and

upper bound in the subtype lattice. Figure 10 shows the rules

for type propagation. Given initial constraints C, propagation

computes the smallest set of constraints C′, and the smallest

sets of types ⌈Xs⌉ and ⌊Xs⌋ for each variable Xs, verifying

the rules of Figure 10. In practice, propagation starts with

C′ = C and ⌈Xs⌉ = ⌊Xs⌋ = ∅ for all Xs. It then iteratively

grows C′ and the bounds to satisfy the rules of Figure 10 until

all rules are satisfied, yielding a least fixed point.

Rule (ii) adds the standard well-formedness rules for

object types. Rules (iii)–(vi) show how to update bounds for

the core subtype constraints. Rule (v) states that if we have

Xs <: Y t, then any upper bound of Y t is an upper bound of

Xs, and vice-versa for any lower bound of Xs. Rule (vi)

propagates upper bounds in a similar way for constraint

Xs <: Y s\ {a1, . . . , an}, but it removes fields {a1, . . . , an}

8 The code uses JavaScript var syntax rather than let from the calculus.

(i) C ⊆ C′;

Well-formedness

(ii) Xall <: X r <: Xw ∈ C′ and Xall <: Xmr <: Xmw ∈ C′;

Subtyping

(iii) if Xs <: L ∈ C′, then L ∈ ⌈Xs⌉;

(iv) if L <: Xs ∈ C′, then L ∈ ⌊Xs⌋;

(v) if Xs <: Y t ∈ C′, then ⌊Xs⌋ ⊆
⌊

Y t
⌋

and
⌈

Y t
⌉

⊆ ⌈Xs⌉;

(vi) if Xs <: Y t\ {a1, . . . , an} ∈ C′, then for any 〈F 〉 ∈
⌈

Y t
⌉

,

add 〈F\ {a1, . . . , an}〉 to ⌈Xs⌉;

Bound strengthening

(vii) if L ∈ ⌊Xs⌋, then top(L) ∈ ⌈Xs⌉;

(viii) if L ∈ ⌈Xs⌉, then bot(L) ∈ ⌊Xs⌋;

Prototypalness and concreteness

(ix) if proto(Y ) ∈ C′, X r <: Y r ∈ C′ and Xw <: Y w ∈ C′, then

proto(X) ∈ C′, X r ≡ Y r ∈ C′, Xw ≡ Y w ∈ C′,

Xmr ≡ Y mr ∈ C′ and Xmw ≡ Y mw ∈ C′;

(x) if concrete(Y ) ∈ C′, X r <: Y r ∈ C′, and Xw <: Y w ∈ C′,

then concrete(X) ∈ C′;

(xi) if proto(X) ∈ C′ and concrete(X) ∈ C′ then

X r <: Xmr ∈ C′ and Xw <: Xmw ∈ C′;

Attaching methods

(xii) if attach(Xb, Xf , Xv) ∈ C′ and [XR]Y1 ⇒ Y2 ∈ ⌈X r

v⌉, then

proto(Xb) ∈ C′, Xmr

b <: X r

R ∈ C′, Xmw

b <: Xw

R ∈ C′, and

strip(Xf ) ∈ C′.

(xiii) if strip(X) ∈ C′, X r <: Y r ∈ C′, and Xw <: Y w ∈ C′, then

strip(Y ) ∈ C′;

Inferring equalities (not essential for soundness)

(xiv) if 〈f1 : F1, . . . , fn : Fn, . . .〉 ∈ ⌊Xs⌋ and

〈f1 : G1, . . . , fn : Gn〉 ∈⌈Xs⌉, then

∀s. {F s
1 ≡ Gs

1, . . . , F
s
n ≡ Gs

n} ⊆ C′;

(xv) if 〈f1 : F1, . . . , fn : Fn, . . .〉 ∈ ⌈Xs⌉ and

〈f1 : G1, . . . , fn : Gn, . . .〉 ∈ ⌈Xs⌉, then

∀s. {F s
1 ≡ Gs

1, . . . , F
s
n ≡ Gs

n} ⊆ C′;

(xvi) if [XR]X1 ⇒ X2 ∈ ⌈Xs⌉ and [YR]Y1 ⇒ Y2 ∈ ⌈Xs⌉, then

∀s. {Xs
1 ≡ Y s

1 , X
s
2 ≡ Y s

2 } ⊆ C′.

Figure 10: Propagation rules.

from each upper bound before propagation. Lower bounds

are not propagated in Rule (vi), as the right-hand side of the

constraint is not a type variable.

Rules (vii) and (viii) perform bound strengthening, a

crucial step for ensuring soundness (see Section 2.3). The

rules leverage predicates top(L) and bot(L), defined as

follows:

top(L) =

{

〈 〉, if L is a row type

L otherwise
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bot(L) =

{

⊥row, if L is a row type

L otherwise

The rules ensure that any lower bound ⌊Xs⌋ includes the

best type information that can be inferred from ⌈Xs⌉, and

vice-versa.

Rules (ix)–(xi) handle the constraints for prototypalness

and concreteness. Recall from Section 3.3 that a prototypal

type is only related to itself by subtyping (modulo row

reordering). So, if we have proto(Y ) and X <: Y , it must

be true that X ≡ Y and also proto(X) (to handle transitive

subtyping). Rule (ix) captures this logic at the level of row

variables. The subtyping rules (Figure 5) show that for any

concrete (NC) type Y , if X <: Y , then X must also be

concrete, either as an NC type (S-NONPROTO) or a concrete

prototypal type (S-PROTOCONC); Rule (x) captures this logic.

Finally, if we have both proto(X) and concrete(X), Rule (xi)

imposes the assumptions from the S-PROTOCONC rule of

Figure 5, ensuring any method-accessed field is present in

the type.

Rules (xii) and (xiii) handle method attachment. Rule (xii)

enforces the meaning of attach as discussed in Section 3.4.

To understand Rule (xiii), say that X and Y are both

unattached method types such that X <: Y . If we add

strip(Y ) to make Y an attached method, X <: Y still holds,

by the S-METHOD subtyping rule (Figure 5). However, if

strip(X) is introduced, then strip(Y ) must also be added, or

else X <: Y will be violated.

Rules (xiv)–(xvi) introduce new type equalities that enable

the inference to succeed in more cases (the rules are not

needed for soundness). Rule (xiv) equates types of shared

fields for any rows r1 ∈ ⌊X
s⌋ and r2 ∈ ⌈X

s⌉; the types

must be equal since r1 <: r2 and the type system has no

depth subtyping. Rule (xv) imposes similar equalities for two

rows in the same upper bound, and Rule (xvi) does the same

for methods.

Example. We describe type propagation for the example

of Figure 9. For the graph, type propagation ensures that

if there is a path from row variable Xs to type L in the

graph, then L ∈ ⌈Xs⌉. E.g., given the path Or
2 → Ow

2 →
〈a : int〉, propagation ensures that {〈a : int〉} ⊆ ⌈Or

2⌉.
The new subtype / equality constraints added to C′ in the

rules in Figure 10 correspond to adding new edges to the

graph. For the example, the C-METHDECL rule generates a

constraint F r ≡ [YR]Y1 ⇒ Y2 (not shown in Figure 9) for the

method literal on line 2 of Figure 1. Once propagation adds

[YR]Y1 ⇒ Y2 to ⌈F r⌉, handling of the attach(O1,M, F )
constraint (Rule (xii)) constrains the method-accessible fields

of O1 to accommodate receiver YR. Specifically, the solver

adds the brown dashed edges Omr
1 → Y r

R and Omw
1 → Y w

R .

The proto(V1) constraint, combined with Or
1 <: V r

1 , leads

the solver to equate all corresponding row variables for O1

and V1 (Rule (ix)). This leads to the addition of the red dotted

edges in Figure 9. These new red edges make all the literals

reachable from Oall
2 ; e.g., we have path Oall

2 → Or
2 → V r

1 →
Or

1 → Ow
1 → 〈d : int,m : M〉. So, propagation yields:

{〈a : int〉, 〈d : int,m : M〉, 〈d : D〉, 〈a : A〉} ⊆
⌈

Oall

2

⌉

Via Rule (xv), the types of a and d are equated across the

rows, yielding A ≡ D ≡ int. Hence, the inference discovers

this.a and this.d on line 2 both have type int, without

observing the invocations of m.

Implementation. Our implementation computes type prop-

agation using the iterative fixed-point solver available in

WALA [10]. WALA’s solver accommodates generation of

new constraints during the solving process, a requirement for

our scenario. WALA’s solver includes a variety of optimiza-

tions, including sophisticated worklist ordering heuristics and

machinery to only revisit constraints when needed. By lever-

aging this solver, these optimizations came for free and saved

significant implementation work. As the sets of types and

fields in a program are finite, the fixed-point computation

terminates.

4.2 Type Ascription

Algorithm 1 Type ascription.

1: procedure ASCRIBETYPE(X)

2: if strip(X) ∈ C′ then strip receivers in ⌈Xs⌉, ⌊Xs⌋

3: for each Xs do

4: if ⌈Xs⌉ = ∅ then Φ(Xs)← default

5: else

6: Φ(Xs)← glb(⌈Xs⌉) ⊲ Fails if no glb

7: for each L ∈ ⌊Xs⌋ do

8: if L 6<: Φ(Xs) then fail

9: if Φ(X r) = int ∨ Φ(X r) = default then

10: Φ(X)← Φ(X r)
11: else if Φ(X r) is method type then

12: if notmethod(X) ∈ C′ then fail

13: Φ(X)← Φ(X r)
14: else ⊲ Φ(X r) must be a row

15: ρ← {Φ(X r) | Φ(Xw)}
16: if proto(X) ∈ C′ then

17: if notproto(X) ∈ C′ then fail

18: Φ(X)← ρP(Φ(Xmr),Φ(Xmw))

19: else if concrete(X) ∈ C′ then Φ(X)← ρNC

20: else Φ(X)← ρNA

Algorithm 1 shows how to ascribe a type to variable

X , given bounds for all row variables Xs and the implied

constraints C′. Here, we assume each type variable can be

ascribed independently, for simplicity; an associated technical

report gives a slightly-modified ascription algorithm that

handles variable dependencies and recursive types [18].

If required by a strip(X) constraint, line 2 handles strip-

ping the receiver type in all method literals of ⌈Xs⌉ and
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⌊Xs⌋ . For each Xs, we check if its upper bound is empty,

and if so assign it the default type. For soundness, the same

default type must be used everywhere in the final ascription;

our implementation uses int. Conceptually, an empty set up-

per bound corresponds to a ⊤ (top) type. However we do

not allow ⊤ in our system, as it would hide problems like

objects and ints flowing into the same (unused) location, e.g.,

x = { }; x = 3.

If the upper bound is non-empty, we compute its greatest

lower bound (glb) (line 6). The glb of a set of row types is a

row containing the union of their fields, where each common

field must have the same type in all rows. For example:

glb({〈a : int〉, 〈b : string〉}) = 〈a : int, b : string〉

glb({〈a : int〉, 〈a : string〉}) is undefined

If no glb exists for two upper bound types, ascription fails

with a type error.9 Given a glb, the algorithm then checks

that every type in the lower bound is a subtype of the glb

(line 8). If this does not hold, then some use in the program

may be invalid for some incoming value, and ascription fails

(examples forthcoming).

Once all glb checks are complete, lines 9–20 compute

a type for X based on its row variables. If Φ(X r) is an

integer, method, or default type, then X is assigned Φ(X r).
Otherwise, an object type for X is computed based on its

row variables. The appropriate qualifier is determined based

on the presence of proto(X) or concrete(X) constraints in

C′, as seen in lines 16–20. The algorithm also checks the

acceptance criteria (Section 3.4), ensuring ascription failure

if they apply (they are introduced by the C-METHDECL and

C-ATTR rules in Figure 8).

Notice that NA is crucial to enable ascription based

exclusively on glb of upper bounds. Absent NA, if an object

of abstract type τ flows from x to y, the types of x and

y must be equal, as τ would have no supertypes in the

lattice. Hence, qualifiers would have to be considered when

deciding which fields should appear in object types, losing

the clean separation in Algorithm 1. Note also, abstractness

is not syntactic (in Figure 1, v3 is only abstract because of

inheritance), so even computing abstractness could require

another fixed point loop.

Example. Returning to O2 in the example of Figure 9,

⌈Or
2⌉ = {〈a : int〉, 〈d : int,m : M〉} after type propagation.

Given type [·] int ⇒ void for M , glb(⌈Or
2⌉) = 〈a : int, d :

int,m : [·] int ⇒ void〉. Φ(Ow
2 ), Φ(O

mr
2 ), and Φ(Omw

2 ) are

computed similarly. Since we have proto(O2) (by C-OBJLIT,

Figure 8), at line 18 ascription assigns O2 the following type,

shown previously in Section 3.3:

{〈d : int,m : [·] int⇒ void, a : int〉 | 〈a〉}P(〈d,a〉,〈a〉)

Using glb of upper bounds for ascription ensures a type

captures what is needed from the term, rather than what is

9 We compute glb over a semi-lattice excluding ⊥row, to get the desired

failure with conflicting field types.

available. In Figure 1, note that v3 is only used to invoke

method m. Hence, only m will appear in the upper bound of

V r
3 , and the type of v3 will only include m, despite the other

fields available in object o3.

Type error examples. We now give two examples

to illustrate detection of type errors. The expression

({a: 3} proto {}).b erroneously reads a non-existent field

b. For this code, the constraints are:

〈 〉 Er Or
Ow

〈b : B〉

〈a : int〉
\ {a}

E is the type of the empty object, and O the type of the

parenthesized object literal. The 〈〉 ↔ Er edges are generated

by the C-OBJEMP rule. As O inherits from the empty object,

we have Or → Er, modeling inheritance of readable fields,

and also Er
\{a}
−−−→ Or, ensuring any readable field of O

except a is inherited from E. Since E is the empty object,

these constraints ensure a is the only readable field of O.

Propagation and ascription detect the error as follows.

〈a : int〉 is not added to ⌈Er⌉, though it is reachable, due to

the \ {a} filter on the edge from Er to Or. Instead, we have

{〈b : B〉} ⊆ ⌈Er⌉: intuitively, since b is not present locally in

O, it can only come from E. Further, we have {〈 〉} ⊆ ⌊Er⌋.
Since 〈 〉 6<: 〈b : B〉, line 8 of Algorithm 1 reports a failure.

As a second example, consider:

({m: fun () { this.f = 3; }}).m()

The invocation is in error, since the object literal o is abstract

(it has no f field). Our constraints are:

〈m : M〉 Ow Omw Y w

R 〈f : int〉

As in Figure 9, the brown dashed edge stems from method

attachment. From the invocation and C-METHAPP, we have

concrete(O). We also have proto(O) (from C-OBJLIT), lead-

ing (via Rule (xi)) to the dotted edge from Ow to Omw. Now,

we have a path from 〈m : M〉 to Ow, and from Ow to

〈f : int〉. Since 〈m : M〉 6<: 〈f : int〉, line 8 will again

report an error.

4.3 Soundness of Type Inference

We prove soundness of type inference, including soundness

of constraint generation, constraint propagation, and type

ascription. We also prove our type system sound. Our typing

judgment and proofs can be found in an associated technical

report [18].

Our proof of soundness of type inference relies on three

lemmas on constraint propagation and ascription, subtyping

constraints, and well-formedness of ascripted types.

Definition 1 (Constraint satisfaction). We say that a typing

substitution Φ, which maps fields in A to types in T , satisfies

the constraint C if, after substituting for inference variables

in C according to Φ, the resulting constraint holds.
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benchmark size benchmark size

access-binary-trees 41 splay 230

access-fannkuch 54 crypto 1296

access-nbody 145 richards 290

access-nsieve 33 navier 355

bitops-3bit-bits-in-byte 19 deltablue 466

bitops-bits-in-byte 20 raytrace 672

bitops-bitwise-and 7 cdjs 684

bitops-nsieve-bits 29 calc 979

controlflow-recursive 22 annex 688

math-cordic 59 tetris 826

math-partial-sums 31 2048 507

math-spectral-norm 45 file 278

3d-morph 26 sensor 266

3d-cube 301

Table 1: Size is non-comment non-blank lines of code.

Programs from the Sunspider suite appear on the left, those

from Octane and Jetstream on the top right, and the Tizen

apps on the bottom right.

Lemma 1 (Soundness of constraint propagation and ascrip-

tion). For any set of constraints C generated by the rules of

Figure 8, on variables X1, . . . , Xn and their associated row

variables, if constraint propagation and ascription succeeds

with assignment Φ, then ∀i, ∀s,Φ(Xi) ⊢ C and Φ(Xs
i ) ⊢ C.

Lemma 2 (Soundness of subtyping constraints). For a set

of constraints C containing the constraints X r <: Y r and

Xw <: Y w, if constraint generation and ascription succeeds

with assignment Φ, then Φ(X) <: Φ(Y ).

Lemma 3 (Well-formedness of ascripted types). For a set of

constraints C containing constraints on variable X , if con-

straint generation and ascription succeeds with assignment

Φ, then 
 Φ(X)

Theorem 1 (Soundness of type inference). For all terms e,

receiver types XR, and contexts Γ, if XR,Γ ⊢ e : X | C and

Φ ⊢ C, then Φ(XR),Φ(Γ) ⊢ e : Φ(X).

5. Evaluation

We experimented with a number of standard benchmarks

(Table 1), among them a selection from the Octane suite [1]

(the same ones used in recent papers on TypeScript [36] and

ActionScript [35]), several from the SunSpider suite [2], and

cdjs from Jetstream [4].10 In all cases, our compiler relied on

the inferred types to drive optimizations. A separate developer

team also created six apps for the Tizen mobile OS (further

details in Section 5.2). In all these programs, inference took

between 1 and 10 seconds. We have used type inference on

additional programs as well, which are not reported here; our

regression suite runs over a hundred programs.

10 For SunSpider, we chose all benchmarks that did not make use of Date
and RegExp library routines, which we do not support. For Octane, we

chose all benchmarks with less than 1000 LOC.

All the features our type inference supports—structural

subtyping, prototype inheritance, abstract types, recursive

object types, etc.—were necessary in even this small sam-

pling of programs. As one example, the raytrace program

from Octane stores items of two different types in a single

array; when read from the array, only an implicit “supertype”

is assumed. Our inference successfully infers the common

supertype. We also found the ability to infer types and find

type errors in uninvoked functions to be useful in writing new

code as well as typing legacy code.

5.1 Practical Considerations

Our implementation goes beyond the core calculus to support

a number of features needed to handle real-world JavaScript

programs. For user code, the primary additional features

are support for constructors and prototype initialization (see

discussion in Section 5.2) and support for polymorphic arrays

and heterogeneous maps. The implementation also supports

manually-written type declarations for external libraries:

such declarations are used to give types for JavaScript’s

built-in operators and standard libraries, and also for native

platform bindings. These type declaration files can include

more advanced types that are not inferred for user-written

functions, specifically types with parametric polymorphism

and intersection types. We now give further details regarding

these extensions.

Maps and arrays JavaScript supports dictionaries, which

are key-value pairs where keys are strings (which can be

constructed on the fly)11 and values are of heterogeneous

types. Our implementation supports maps, albeit with a

homogeneous polymorphic signature string→ τ , where τ

is any type. Our implementation permits array syntax (a[f])

for accessing maps, but not for record-style objects. Arrays

are supported similarly, with the index type int instead of

string. Note that maps (and arrays) containing different

types can exist in the same program; we instantiate the τ

at each instance appropriately.

Constructors Even though we present object creation as

allocation of object literals, JavaScript programmers often

use constructors. A constructor implicitly declares an object’s

fields via assignments to fields of this. We handle construc-

tors by distinguishing them syntactically (as functions with

a capitalized name) and using syntactic analysis to discover

which fields of this they write.

Operator overloading JavaScript operators such as + are

heavily overloaded. Our implementation includes a separate

environment file with all permissible types for such operators;

the type checker selects the appropriate one, and the backend

emits the required conversion. Many of the standard functions

are also overloaded in terms of the number or types of

arguments and are handled similarly.

11 By contrast, object fields are fixed strings.
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benchmark workarounds classes / types in TypeScript

splay 2 / 15

crypto C,U 8(1) / 142

richards C 7(1) / 30

navier 1(1) / 41

deltablue I, P 12 / 61

raytrace I 14(1) / 48

cdjs U, P —

Table 2: Workarounds needed in selected Octane benchmarks

and cdjs. Each workaround impacted multiple lines of code.

For relevant benchmarks, the last column quotes from Rastogi

et al. [36] the number of classes (abstract ones in parentheses)

and type annotations added to type check these programs in

TypeScript.

Generic and native functions Some runtime functions,

such as an allocator for a new array, are generic by nature.

Type inference instantiates the generic parameter appropri-

ately and ensures that arrays are used consistently (per in-

stance). As this project arose from pursuing native perfor-

mance for JavaScript applications on mobile devices, we also

support type-safe interfacing with native platform functions

via type annotations supplied in a separate environment file.

5.2 Explanation of Workarounds

Our system occasionally requires workarounds for type infer-

ence to succeed. The key workarounds needed for the Octane

programs and cdjs are summarized in Table 2; our modified

versions are available in the supplementary materials for this

paper. The SunSpider programs did not require any major

workaround.12 After these workarounds, types were inferred

fully automatically.

C (Constructors). JavaScript programs often declare a

behavioral interface by defining methods on a prototype, as

follows:

1 function C() { ... } // constructor

2 C.prototype.m1 = function () {...}

3 C.prototype.m2 = function () {...}

4 ...

We support this pattern, provided that such field writes (in-

cluding the write to the prototype field itself) appear immedi-

ately and contiguously after the constructor definition. With-

out this restriction, we cannot ensure in a flow-insensitive type

system that the constructor is not invoked before all the pro-

totype properties have been initialized. The code refactoring

required to accommodate this restriction is straightforward

(see Figure 11 for an example). We did not see any cases in

which the prototype was updated more than once.

U (Unions). Lack of flow sensitivity also precludes type

checking (and inference) for unions distinguished via a type

test. This feature is useful in JavaScript programs, and we

12 A trivial workaround had to do with the current implementation require-

ment that only constructor names to begin with an uppercase letter.

1 // Original

2 function TaskControlBlock(...) {

3 this.link = link;

4 this.id = id;

5 this.priority = priority;

6 this.queue = queue;

7 this.task = task;

8 ...

9 }

10 var STATE_RUNNING = 0;

11 ...

12 TaskControlBlock.prototype.setRunning =

13 function () {

14 this.state = STATE_RUNNING;

15 };

16 ...

1 // Refactored

2 var STATE_RUNNING = 0;

3 ...

4 function TaskControlBlock(...) {

5 this.link = link;

6 this.id = id;

7 this.priority = priority;

8 this.queue = queue;

9 this.task = task;

10 ...

11 }

12 TaskControlBlock.prototype.setRunning =

13 function () {

14 this.state = STATE_RUNNING;

15 };

16 ...

Figure 11: Code fragment from richards. In the refactored

code (below), we simply moved the constant declarations out

of the way (C).

encountered it in one of the Octane programs. In the original

crypto, the BigInteger constructor may accept a number,

or a string and numeric base (arity overloading as well); we

split the string case into a separate function, and updated call

sites as appropriate. For cdjs, there were two places where

the fields present in an object type could differ depending on

the value of another field. We changed the code to always

have all fields present, to respect fixed object layout.

P (Polymorphism). Although inferring polymorphic types

is well understood in the context of languages like ML, its

limits are less well understood in a language with mutable

records and subtyping. We do not attempt to infer parametric

polymorphism, although this feature is known to be useful

in JavaScript programs and did come up in deltablue

and cdjs. We plan to support generic types via manual

annotations, as we already do for environment functions.

For now, we worked around the issue with code duplication.

See Figure 12 for an example.

I (Class-based Inheritance). Finally, JavaScript programs

often use an ad hoc encoding of class-based inheritance: pro-

grammers develop their own shortcuts (or use libraries) that
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1 Planner.prototype.removePropagateFrom =

2 function (out) {

3 out.determinedBy = null;

4 out.walkStrength = Strength.prototype.WEAKEST;

5 out.stay = true;

6 var unsatisfied = new OrderedCollection();

7 // Original

8 // var todo = new OrderedCollection();

9 var todo = new OrderedCollectionVariable();

10 todo.add(out);

11 };

Figure 12: Excerpt from modified deltablue.

OrderedCollections were being populated with dif-

ferent types, which cannot be typed without parametric

polymorphism. As a workaround, a duplicate type

OrderedCollectionVariable was created, and appropriate

sites (like line 9 above) were changed to use the new type.

use “monkey patching”13 and introspection. We cannot type

these constructs, but our type system can support class-based

inheritance via prototypal inheritance, with some additional

verbosity (see Figure 13). The latest JavaScript specification

includes class-based inheritance, which obviates the need for

encoding classes by other means. We intend to support the

new class construct in the future.

Usability by developers. With our inference system, devel-

opers remain mostly unaware of the types being inferred,

as the inference is automatic and no explicit type ascription

is generated. For inference failures, we invested significant

effort to provide useful error messages [31] that were under-

standable without knowledge of the underlying type theory.

While some more complex concepts like intersection types

are needed to express types for certain library routines, these

types can be written by specialists, so developers solely in-

teracting with the inference need not deal with such types

directly.

More concretely, the Tizen apps listed in Table 1 were

created by a team of developers who were not experts in type

theory. The apps required porting of code from existing web

applications (e.g., for tetris and 2048) as well as writing

new UI code leveraging native Tizen APIs. To learn our

subset of JavaScript, the developers primarily used a manual

we wrote that described the restrictions of the subset without

detailing the type inference system; an associated technical

report gives more details on this manual [18].

13 “Monkey patching” here refers to adding previously non-existent methods

to an object (violating fixed layout) or modifying the pre-existing methods of

global objects such as Object.prototype (making code difficult to read

accurately, and thwarting optimization of common operations). Our system

permits dynamic update of existing methods of developer-created objects,

preserving fixed layout.

1 // Original

2 Object.defineProperty(Object.prototype,

3 "inheritsFrom", ...)

4 function EqualityConstraint(var1, var2, strength) {

5 EqualityConstraint.superConstructor

6 .call(this, var1, var2, strength);

7 }

8 EqualityConstraint.inheritsFrom(BinaryConstraint);

1 // Refactored

2 function EqualityConstraintInheritor() {

3 this.execute = null;

4 }

5 EqualityConstraintInheritor.prototype =

6 BinaryConstraint.prototype;

7 function EqualityConstraint(var1, var2, strength) {

8 this.strength = strength;

9 this.v1 = var1;

10 this.v2 = var2;

11 this.direction = Direction.NONE;

12 this.addConstraint();

13 }

14 EqualityConstraint.prototype =

15 new EqualityConstraintInheritor();

Figure 13: Excerpt showing a change in deltablue to

work around ad hoc class-based inheritance. The refactored

code (bottom) avoids monkey-patching Object with a new

introspective method inheritsFrom.

5.3 More Problematic Constructs

Certain code patterns appearing in common JavaScript frame-

works make heavy use of JavaScript’s dynamic typing and

introspective features; such code is difficult or impossible

to port to our typed subset. As an example, consider the

json2.js program,14 a variant of which appears in Crock-

ford [25]. A core computation in the program, shown in

Figure 14, consists of a loop to traverse a JSON data struc-

ture and make in-place substitutions. In JavaScript, arrays

are themselves objects, and like objects, their contents can be

traversed with a for-in loop. Hence, the single loop at line 4

applies equally well to arrays and objects. Also note that in

different invocations of walk, the variable v may be an array,

object, or some value of primitive type.

Our JavaScript subset does not allow such code. We were

able to write an equivalent routine in our subset only after

significant refactoring to deal with maps and arrays separately,

as shown in Figure 15; moreover, we had to “box” values of

different types into a common type to enable the recursive

calls to type check. Clearly, this version loses the economy

of expression of dynamically-typed JavaScript.

JavaScript code in frameworks (even non-web frameworks

like underscore.js15) is often written in a highly introspec-

tive style, using constructs not supported in our subset. One

common usage is extending an object’s properties in-place

14 https://github.com/douglascrockford/JSON-js
15 http://underscorejs.org/
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1 function walk(k, v) {

2 var i, n;

3 if (v && typeof v === object) {

4 for (i in v) {

5 n = walk(i, v[i]);

6 if (n !== undefined) {

7 v[i] = n;

8 }

9 }

10 }

11 return filter(k, v);

12 }

Figure 14: JSON structure traversal.

1 function JSONVal() {

2 this.tag = ...

3 this.a = null; // array

4 this.m = null; // map

5 this.intval = 0; // int value

6 this.strval = ""; // string value

7 }

8

9 function walk(k, v) { // v instance of JSONVal

10 var i, j, n;

11 switch (v.tag) {

12 case Constants.INT:

13 case Constants.STR:

14 break;

15 case Constants.MAP:

16 for (var i in v.m) {

17 n = walk(i, v.m[i]);

18 if (n !== undefined) { v.m[i] = n; }

19 }

20 break;

21 case Constants.ARRAY:

22 for (j = 0; j < v.a.length; j++) {

23 // j+"" converts j to a string

24 n = walk(j+"",v.a[j]);

25 if (n !== undefined) { v.a[j] = n; }

26 }

27 break;

28 }

29 return filter(k,v);

30 }

Figure 15: JSON structure traversal in our subset of Java-

Script.

1 Object.prototype.extend = function (dst, src) {

2 for (var prop in src) {

3 dst[prop] = src[prop];

4 }

5 }

Figure 16: extend in JavaScript

using the pattern shown in Figure 16. The code treats all

objects—including those meant to be used as structs—as

maps. Moreover, it also can add properties to dst that may

not have been present previously, violating fixed-object lay-

out. We do not support such routines in our subset.

As mentioned before, the full JavaScript language includes

constructs such as eval that are fundamentally incompatible

with ahead-of-time compilation. We also do not support

adding or modifying behavior (aka “monkey patching”) of

built-in library objects like Object.prototype (as is done

in Figure 16). The community considers such usage as bad

practices [25].

Even if we take away these highly dynamic features,

there is a price to be paid for obtaining type information

for JavaScript statically: either a programmer stays within a

subset that admits automatic inference, as explored in this

paper and requiring the workarounds of the kinds described

in Section 5.2; or, the programmer writes strong enough

type annotations (the last column of Table 2 shows the effort

required in adding such annotations for the same Octane

programs in [36]).

Whether this price is worth paying ultimately depends on

the value one attaches to the benefits offered by ahead-of-time

compilation.

5.4 The Promise of Ahead-of-Time Compilation

As mentioned earlier, we have implemented a compiler that

draws upon the information computed by type inference

(Section 2.1) and generates optimized code. The details of the

compiler are outside the scope of the paper, but we present

preliminary data to show that AOTC for JavaScript yields

advantages for resource-constrained devices.

We measured the space consumed by the compiled pro-

gram against the space consumed by the program running on

v8, a modern just-in-time compiler for JavaScript. The com-

parative data is shown in Figure 17. The Octane programs

were run with their default parameters.16 As the figure shows,

ahead-of-time compilation yielded significant memory sav-

ings vs. just-in-time compilation.

We also timed these benchmarks for runtime performance

on AOTC compiled binaries and the v8 engine. Figure 18

shows the results for one of the programs, deltablue;

the figure also includes running time on duktape, a non-

optimizing interpreter with a compact memory footprint. We

observe that (i) the non-optimizing interpreter is quite a bit

slower than the other engines, and (ii) for smaller numbers of

iterations, AOTC performs competitively with v8. For larger

iteration counts, v8 is significantly faster. Similar behavior

was seen for all six Octane programs (see Figure 19). The

AOTC slowdown over v8 for the largest number of runs

ranged from 1.5X (navier) to 9.8X (raytrace). We expect

significant further speedups from AOTC as we improve our

16 Except for splay, which we ran for 80 as opposed to 8000 elements;

memory consumption in splay is dominated by program data.
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optimizations and our garbage collector. Full data for the six

Octane programs, both for space and time, are presented in

an associated technical report [18].

Interoperability. In a number of scenarios, it would be

useful for compiled code from our JavaScript subset to

interoperate with unrestricted JavaScript code. The most

compelling case is to enable use of extant third-party libraries

without having to port them, e.g., frameworks like jQuery17

for the web18 or the many libraries available for Node.js.19

Additionally, if a program contains dynamic code like that of

Figure 14 or Figure 16, and that code is not performance-

critical, it could be placed in an unrestricted JavaScript

module rather than porting it.

Interoperability with unrestricted JavaScript entails a num-

ber of interesting tradeoffs. The simplest scheme would be

to invoke unrestricted JavaScript from our subset (and vice

versa) via a foreign function interface, with no shared heap.

But, this would impose a high cost on such calls, due to mar-

shalling of values, and could limit expressivity, e.g., passing

functions would be difficult. Alternately, our JavaScript sub-

17 http://jquery.com
18 Note that running our compiled code in a web browser would require an

implementation of the DOM APIs, which our current implementation does

not support.
19 http://nodejs.org
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Figure 19: Crossover behavior of our AOTC system vs. the

v8 runtime for the six Octane programs.

set and unrestricted JavaScript could share the same heap,

with additional type checks to ensure that inferred types are

not violated by the unrestricted JavaScript. The type checks

could “fail fast” at any violation, like in other work on grad-

ual typing [36, 41, 44]. But, this could lead to application

behavior differing on our runtime versus a standard JavaScript

runtime, as the standard runtime would not perform the ad-

ditional checks. Without “fail fast,” the compiled code may

need to be deoptimized at runtime type violations, adding

significant complexity and potentially slowing down code

with no type errors. At this point, we have a work-in-progress

implementation of interoperability with a shared heap and

“fail fast” semantics, but a robust implementation and proper

evaluation of these tradeoffs remain as future work.

6. Related Work

Related work spans type systems and inference for JavaScript

and dynamic languages in general, as well as the type infer-

ence literature more broadly.

Type systems and inference for JavaScript. Choi et al. [20,

21] presented a typed subset of JavaScript for ahead-of-time

compilation. Their work served as our starting point, and

we built on it in two ways. First, our type system extends

theirs with features that we found essential for real code,

most crucially abstract types (see discussion throughout the

paper). We also present a formalization and prove these

extensions sound (see the technical report [18]). Second,

whereas they relied on programmer annotations to obtain
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types, we developed and implemented an automatic type

inference algorithm.

Jensen et al. [29] present a type analysis for JavaScript

based on abstract interpretation. They handle prototypal in-

heritance soundly. While their analysis could be adapted

for compilation, it does not give a typing discipline. More-

over, their dataflow-based technique cannot handle partial

programs, as discussed in Section 2.3.

TypeScript [8] extends JavaScript with type annotations,

aiming to expose bugs and improve developer productivity. To

minimize adoption costs, its type system is very expressive

but deliberately unsound. Further, it requires type annota-

tions at function boundaries, while we do global inference.

Flow [3] is another recent type system for JavaScript, with

an emphasis on effective flow-sensitive type inference. Al-

though a detailed technical description is unavailable at the

time of this writing, it appears that our inference technique

has similarity to Flow’s in its use of upper- and -lower bound

propagation [19]. Flow’s type language is similar to that of

TypeScript, and it also sacrifices strict soundness in the in-

terest of usability. It would be possible to create a sound

gradually-typed version of Flow (i.e., one with dynamic type

tests that may fail), but this would not enforce fixed object lay-

out. For TypeScript, a sound gradually-typed variant already

exists [36], which we discuss shortly.

Early work on type inference for JavaScript by Thie-

mann [42] and Anderson et al. [14] ignored essential lan-

guage features such as prototype inheritance, focusing in-

stead on dynamic operations such as property addition. Guha

et al. [28] present a core calculus λJS for JavaScript, upon

which a number of type systems have been based. TeJaS [30]

is a framework for building type checkers over λJS using bidi-

rectional type checking to provide limited inference. Politz et

al. [34] provide a type system enforcing access safety for a

language with JavaScript-like dynamic property access.

Bhargavan et al. [15] develop a sound type system and

inference for Defensive JavaScript (DJS), a JavaScript subset

aimed at security embedding code in untrusted web pages.

Unlike our work, DJS forbids prototype inheritance, and their

type inference technique is not described in detail.

Gradual typing for JavaScript. Rastogi et al. [35] give a

constraint-based formulation of type inference for Action-

Script, a gradually-typed class-based dialect of JavaScript.

While they use many related techniques—their work and ours

are inspired by Pottier [22]—their gradually-typed setting

leads to a very different constraint system. Their (sound)

inference aims at proving runtime casts safe, so they need

not validate upper bound constraints. They do not handle

prototype inheritance, relying on ActionScript classes.

Rastogi et al. [36] present Safe TypeScript, a sound, grad-

ual type system for TypeScript. After running TypeScript’s

(unsound) type inference, they run their (sound) type checker

and insert runtime checks to ensure type safety. Richards et

al. [40] present StrongScript, another TypeScript extension

with sound gradual typing. They allow the programmer to en-

force soundness of some (but not all) type annotations using

a specific type constructor, thus preserving some flexibility.

They also use sound types to improve compilation and per-

formance. Being based on TypeScript, both systems require

type annotations, while we do not (except for signatures of

external library functions). Moreover, they do not support

general prototype inheritance or mutable methods, but rather

rely on TypeScript’s classes and interfaces.

Type inference for other dynamic languages. Agesen

et al. [12] present inference for Self, a key inspiration

for JavaScript which includes prototype inheritance. Their

constraint-based approach is inspired by Palsberg and

Schwartzbach [32]. However, their notion of type is a set

of values computed by data flow analysis, rather than syntac-

tic typing discipline.

Foundations of type inference and constraint solving.

Type inference has a long history, progressing from early

work [26] through record calculi and row variables [45, 46]

through more modern presentations. Type systems for object

calculi with object extension (e.g., prototype-based inheri-

tance) and incomplete (abstract) objects extends back to the

late 1990s [16, 17, 27, 37]. To our knowledge, our system

is the first to describe inference for a language with both

abstract objects and prototype inheritance.

Trifonov and Smith [43] describe constraint generation

and solving in a core type system where (possibly recursive)

types are generated by base types, ⊥, ⊤ and→ only. They

introduce techniques for removing redundant constraints and

optimizing constraint representation for faster type inference.

Building on their work, Pottier [22, 23] crisply describes the

essential ideas for subtyping constraint simplification and

resolution in a similar core type system. We do not know

of any previous generalization of this work that handles

prototype inheritance. In both of these systems, lower and

upper bounds for each type variable are already defined while

resolving and simplifying constraints. Both lines of work

support partial programs, producing schemas with arbitrary

constraints rather than an established style of polymorphic

type.

Pottier and Rémy [24] describe type inference for ML,

including records, polymorphism, and references. Rémy

and Vouillon [38] describe type inference for class-based

objects in Objective ML. These approaches are based on row

polymorphism rather than subtyping, and they do not handle

prototype inheritance or non-explicit subtyping.

Aiken [13] gives an overview of program analysis in the

general framework of set constraints, with applications to

dataflow analysis and simple type inference. Most of our

constraints would fit in his framework with little adaptation,

and his resolution method also uses lower and upper bounds.

His work is general and does not look into specific program

construct details like objects, or a specific language like

JavaScript.
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